Browse

41 - 50 of 418 items :

  • Geosciences x
  • Materials Sciences x
Clear All
Modelling of the Aerospace Structure Demonstrator Subcomponent

Abstract

Carbon-epoxy composite materials, due to their high strength in relation to mass, are increasingly used in the construction of aircraft structures, however, they are susceptible to a number of damages. One of the most common is delamination, which is a serious problem in the context of safe operation of such structures. As part of the TEBUK project, the Institute of Aviation has developed a methodology for forecasting the propagation of delamination. In order to validate the proposed method, an aerial structure demonstrator, modelled on the horizontal stabilizer of the I-23 Manager aircraft, was carried out. However, in order to carry out the validation, it was necessary to "simplify" the demonstrator model. The paper presents a numerical analysis conducted in order to separate from the TEBUK demonstrator model a fragment of the structure, which was used to study the delamination area, as an equivalent of the whole demonstrator. Subcomponent selection was carried out in several stages, narrowing down the analysed area covering delamination in subsequent steps and verifying the compliance of specific parameters with the same parameters obtained in a full demonstrator model. The parameters compared were: energy release rate values on the delamination front line and strain values in the delamination area. The numerical analyses presented in the paper were performed with the use of the MSC.Marc/Mentat calculation package. As a result of the analyses, a fragment of the structure was selected, which allows to significantly reduce the time and labour consumption of the production of the studied object, as well as to facilitate experimental research.

Open access
New Method of Visibility Network and Statistical Pattern Network Recognition Usage in Terrain Surfaces

Abstract

Many problems in the analysis of natural terrain surface shapes and the construction of terrain maps to model them remain unsolved. Almost the whole process of thematic interpretation of aerospace information consists of a step-by-step grouping and further data conversion for the purpose of creating a completely definite, problematically oriented picture of the earth’s surface. In this article, we present application of a new method of drawing 3D visibility networks for pattern recognition and its application on terrain surfaces. For the determination of complexity of 3D surface terrain, we use fractal geometry method. We use algorithm for constructing the visibility network to analyse the topological property of networks used in complex terrain surfaces. Terrain models give a fast overview of a landscape and are often fascinating and overwhelmingly beautiful works by artists who invest all their interest and an immense amount of work and know-how, combined with a developed sense of the portrayed landscape, in creating them. At the end, we present modelling of terrain surfaces with topological properties of the visibility network in 3D space.

Open access
The Possibility of Ultraviolet Enceladus’ Observations from Stratospheric Balloons

Abstract

Stratospheric balloons are very important sources for space and terrestrial observation experiments in many disciplines. Instruments developed for astrophysical measurements are usually reusable. It is also possible to observe both hemispheres including observations from the polar and equatorial regions for thirty days or even longer. On the other hand the UV atmospheric transmittance window was used for the astrophysical observations less often than visible optical bands. At the end of the 2017 there are a few scientific groups working on near-UV or UV spectrographs and cameras for balloon flights.

In this paper we are discussing the possibility of ultraviolet measurement of Enceladus, an icy Saturnian moon, surface reflectance between 200 and 400 nm from the 20-50 km altitudes. At visible and near infrared optical channels Enceladus’ reflectance is very high (near 1.0). This value is consistent with a surface composed of water ice, however at some ultraviolet wavelengths Enceladus reflectance is lower than it would be expected for this type of surface. The scientific research done in the last decade was focused on H2O, NH3, and tholin particles detection on the Enceladus’ surface as a reason of low UV reflectance phenomenon. Continuous observation of Enceladus’ UV reflectance variability from stratospheric balloons may be interesting and may give us the proof of the presence of biomarkers or/and tholin particles.

Open access
Rotorcraft in the Performance Based Navigation International Civil Aviation Organization Implementation

Abstract

European Commision adopted in July new regulations about laying down airspace usage requirements and operating procedures concerning performance based navigation. It is next step in realization of the the global program PBN ICAO. At the 36th General Assembly of ICAO held in 2007, the Republic of Poland agreed to ICAO resolution A36-23 which urges all States to implement PBN. In future aviation concepts the use of Performance Based Navigation (PBN) is considered to be a major Air Traffic Management (ATM) concept element. ICAO has drafted standards and implementation guidance for PBN in the ICAO Doc 9613 “PBN Manual”. The Based Performance Navigation Concept represents and shift from sensor-based to performance based navigation connected with criteria for navigation: accuracy, integrity, availability, continuity and functionality depending on the phase of the flight. Through PBN and changes in the communication, surveillance and ATM domain, many advanced navigation applications are possible to improve airspace efficiency, improve airport sustainability, reduce the environmental impact of air transport in terms of noise and emission, increase safety and improve flight efficiency.

Open access
Experimental bearing capacity of eccentrically loaded foundation near a slope

Abstract

Based on the response of small-scale model square footing, the present paper shows the results of an experimental bearing capacity of eccentrically loaded square footing, near a slope sand bed. To reach this aim, a steel model square footing of (150 mm × 150 mm) and a varied sand relative density of 30%, 50% and 70% are used. The bearing capacity-settlement relationship of footing located at the edge of a slope and the effect of various parameters such as eccentricity (e) and dimensions report (b/B) were studied. Test results indicate that ultimate bearing capacity decreases with increasing load eccentricity to the core boundary of footing and that as far as the footing is distant from the crest, the bearing capacity increases. Furthermore, the results also prove that there is a clear proportional relation between relative densities –bearing capacity. The model test provides qualitative information on parameters influencing the bearing capacity of square footing. These tests can be used to check the bearing capacity estimated by the conventional methods.

Open access
Effectiveness of reinforcing an earth structure with a system of counterfort drains over a long-term use

Abstract

The paper evaluates the effectiveness of reinforcing a damaged earth structure with making counterfort drains in its slope. The system of counterfort drains changed the soil properties significantly over a long-term use. The evaluation was based on many years of field and laboratory tests and stability analysis. The field tests concerned the observation of N WST probing resistance change, and the laboratory tests concerned the change in soil consistency and water content. The paper presents the results of tests that were conducted over 13 years.

Open access
Experimental identification of modal parameters for the model of a building subjected to short-term kinematic excitation

Abstract

In this work, the input-output method of dynamic parameters' identification is experimentally tested. A method based on the transformation of a dynamic problem into a static problem by means of integration of the input and output signal was presented. The problem discussed in this article is the identification of the coefficients of stiffness matrices and eigenfrequencies of a discrete dynamic system subjected to kinematic input. The experimental analysis was carried out on a three-storey slab-and-column structure, which constitutes a physical model of a building. The vibrations of the model were excited kinematically by an earthquake simulator. The device has a computer-controlled, movable table top, which can move independently in three directions, that is, horizontally, vertically, and rotationally around the vertical axis.

The aim of the experimental studies presented in this work was to determine the dynamic parameters of the model (stiffness, natural frequencies) using the input-output method in the time domain. Moreover, the results obtained with this method were compared with the results of experimental modal analysis (EMA) in order to verify their correctness. It was assumed that the movement of the base is horizontal and occurs in one direction. Two short-term, irregular kinematic excitations of the construction were considered, and the selected results and conclusions from experimental analyses were presented in this work.

Open access
Numerical solution through mathematical modelling of unsteady MHD flow past a semi-infinite vertical moving plate with chemical reaction and radiation

Abstract

In the present manuscript, unsteady magnetohydrodynamic (MHD) flow over a moving porous semi-infinite vertical plate with time-dependent suction has been studied in the presence of chemical reaction and radiation parameters. Time-dependent partial differential equations in the dimensionless form are solved numerically through mathematical modelling in COMSOL Multiphysics. The results are obtained for velocity, temperature and concentration profiles at different times. Steady state results are also presented for different values of physical parameters. The parameters involved in the problem are useful to change the characteristics of velocity, heat transfer and concentration profiles. The numerical solution of partial differential equations involved in the problem is obtained without sacrificing the relevant physical phenomena.

Open access
Stress states caused in chamber of reinforced concrete grain silo by non-centric emptying on large eccentricities

Abstract

The article presents the analysis of complex stress states in the concrete structure of grain silos, caused by non-centric emptying. The authors present a combination of loads from the pressure of bulk solid on the silo chamber according to Eurocode 1, Part 4 [11], which should be taken into account when emptying on large eccentricities in action assessment class 3 (AAC3) silos. For the example of a cylindrical wheat silo with a height of 25 m and a diameter of 10 m, the researchers carried out an analysis regarding the impact of the size of the eccentric discharge outlet on the distributions of forces and bending moments in a reinforced concrete wall.

Open access
Treatment of a collapsible soil using a bentonite–cement mixture

Abstract

The study of collapsible soils that are generally encountered in arid and semi-arid regions remains a major issue for geotechnical engineers. This experimental study, carried out on soils reconstituted in the laboratory, aims firstly to present a method of reducing the collapse potential to an acceptable level by treating them with different levels of bentonite–cement mixture while maintaining the water content and degree of compactness, thus reducing eventual risks for the structures implanted on these soils. Furthermore, a microscopic study using scanning electron microscopy was carried out to explore the microstructure of the soil in order to have an idea of the phenomena before and after treatment. The results show that treatment with a bentonite–cement mixture improves the geotechnical and mechanical characteristics, modifies the chemical composition of the soil, reduces the collapse potential and the consistency limits. The microstructural study and the X-ray energy dispersive spectroscopy analysis clearly illustrate an association of elementary particles in the soil aggregates, whereby the arrangement of these aggregates leads to the formation of a dense and stable material.

Open access