Browse

You are looking at 31 - 40 of 167 items for :

  • Technical and Applied Physics x
Clear All
Open access

Mohamed A. Elblbesy

Abstract

Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

Open access

Karthick Raj Mani, Suresh Poudel and K J Maria Das

Abstract

Purpose: To investigate the cardio-pulmonary doses between Deep Inspiration Breath Hold (DIBH) and Free Breathing (FB) technique in left sided breast irradiation.

Materials & Methods: DIBH CT and FB CT were acquired for 10 left sided breast patients who underwent whole breast irradiation with or without nodal irradiation. Three fields single isocenter technique were used for patients with node positive patients along with two tangential conformal fields whereas only two tangential fields were used in node negative patients. All the critical structures like lungs, heart, esophagus, thyroid, etc., were delineated in both DIBH and FB scan. Both DIBH and FB scans were fused with the Dicom origin as they were acquired with the same Dicom coordinates. Plans were created in the DIBH scan for a dose range between 50 Gy in 25 fractions. Critical structures doses were recorded from the Dose Volume Histogram for both the DIBH and FB data set for evaluation.

Results: The average mean heart dose in DIBH vs FB was 13.18 Gy vs 6.97 Gy, (p = 0.0063) significantly with DIBH as compared to FB technique. The relative reduction in average mean heart dose was 47.12%. The relative V5 reduced by 14.70% (i.e. 34.42% vs 19.72%, p = 0.0080), V10 reduced by 13.83% (i.e. 27.79 % vs 13.96%, p = 0.0073). V20 reduced by 13.19% (i.e. 24.54 % vs 11.35%, p = 0.0069), V30 reduced by 12.38% (i.e. 22.27 % vs 9.89 %, p = 0.0073) significantly with DIBH as compared to FB. The average mean left lung dose reduced marginally by 1.43 Gy (13.73 Gy vs 12.30 Gy, p = 0.4599) but insignificantly with DIBH as compared to FB. Other left lung parameters (V5, V10, V20 and V30) shows marginal decreases in DIBH plans compare to FB plans.

Conclusion: DIBH shows a substantial reduction of cardiac doses but slight and insignificant reduction of pulmonary doses as compared with FB technique. Using the simple DIBH technique, we can effectively reduce the cardiac morbidity and at the same time radiation induced lung pneumonitis is unlikely to increase.

Open access

Ali Shahin and Wesam Bachir

Abstract

Optical phantoms are widely used for evaluating the performance of biomedical optical modalities, and hence, absorbing and scattering materials are required for the construction of optical phantoms. Towards that aim, new readily available and inexpensive black Ink (Parker) as a simulating absorber as well as Intralipid 20% as a simulating scatterer are thoroughly investigated. Broadband Transmittance and Diffuse reflectance spectroscopic measurements were performed in the visible range 400 – 700 nm. Optical properties of the phantom materials are determined. Analytical expressions for absorption and scattering coefficient related to the concentrations and wavelength of the Parker ink and Intralipid are also presented and discussed. The results show nonlinear trend in the absorption coefficient of Parker ink over the examined visible spectral range. Furthermore, Intralipid scattering coefficient variation across the mentioned spectral range shows a tissue-like scattering trend. The findings demonstrate the capability of the broadband transmission and diffuse reflectance for characterizing tissue-like phantom materials in the examined spectral range.

Open access

Behrouz Rasuli, Raheleh Tabari Juybari, Meysam Forouzi and Mohammad Ghorbani

Abstract

Introduction: The main purpose of this study was to investigate patient dose in pelvic and abdomen x-ray examinations. This work also provided the LDRLs (local diagnostic reference levels) in Khuzestan region, southwest of Iran to help establish the NDRLs (national diagnostic reference levels).

Methods: Patient doses were assessed from patient’s anatomical data and exposure parameters based on the IAEA indirect dosimetry method. With regard to this method, exposure parameters such as tube output, kVp, mAs, FFD and patient anatomical data were used for calculating ESD (entrance skin dose) of patients. This study was conducted on 250 standard patients (50% men and 50% women) at eight high-patient-load imaging centers.

Results: The results indicate that mean ESDs for the both pelvic and abdomen examinations were lower than the IAEA and EC reference levels, 2.3 and 3.7 mGy, respectively. Mean applied kVps were 67 and 70 and mean FFDs were 103 and 109, respectively. Tube loadings obtained in this study for pelvic examination were lower than all the corresponding values in the reviewed literature. Likewise, the average annual patient load across all hospitals were more than 37000 patients, i.e. more than 100 patients a day.

Conclusions: The authors recommend that DRLs (diagnostic reference levels) obtained in this region, which are the first available data, can be used as local DRLs for pelvic and abdomen procedures. This work also provides that on-the-job training programs for staffs and close cross collaboration between physicists and physicians should be strongly considered.

Open access

Freek CP Du Plessis

Abstract

Patients undergoing computerized tomography (CT) scans for tumor localization and treatment planning are frequently scanned using pre-set customized exposure protocols for optimal imaging of different anatomical sites. The question arises if these scanning protocols will produce a deviation in the Hounsfield number for a given tissue that can afterwards be used to predict the resulting dose calculation deviation due to this. The question is also if the deviation in the Hounsfield number of a tissue is large enough to affect dose calculation clinically significant.

A study was devised in which a RMI phantom was scanned with five different scanning protocols and two CT beam energies at 120 and 135 kV. To assess the effect of insert configuration, Hounsfield number measurements were repeated for high density RMI inserts in the center and outer rings in the phantom. For each material insert the standard deviation of the Hounsfield number was calculated. To assist in dose prediction a series of DOSXYZnrc Monte Carlo calculations were carried out for beam qualities between 6 and 16 MV for a range of Hounsfield numbers calculated for bone and water. This provided information on how the depth dose varied as a function of Hounsfield number variation. Lastly, a series of treatment plans were setup for absorbed dose calculation using the RMI insert electron densities vs Hounsfield relations measured above. The absorbed dose of corresponding plans with the largest Hounsfield number variation were subtracted to find the dose discrepancies.

It was found that the dose discrepancies in tissue types could be indicated by the deviation of the Hounsfield number due to different scanning protocols. The calculated dose difference were in all cases within 3%.

Open access

Asghar Mesbahi and Rezvan Khaldari

Abstract

In the current study the neutron and photon scattering properties of some newly developed high density concretes (HDCs) were calculated by using MCNPX Monte Carlo code. Five high-density concretes including Steel-Magnetite, Barite, Datolite-Galena, Ilmenite-ilmenite, Magnetite-Lead with the densities ranging from 5.11 g/cm3 and ordinary concrete with density of 2.3 g/cm3 were studied in our simulations. The photon beam spectra of 4 and 18 MV from Varian linac and neutron spectra of clinical 18 MeV photon beam was used for calculations. The fluence of scattered photon and neutron from all studied concretes was calculated in different angles. Overall, the ordinary concrete showed higher scattered photons and Datolite-Galena concrete (4.42 g/cm3) had the lowest scattered photons among all studied concretes. For neutron scattering, fluence at the angle of 180 was higher relative to other angles while for photons scattering fluence was maximum at 90 degree. The scattering fluence for photons and neutrons was dependent on the angle and composition of concrete. The results showed that the fluence of scattered photons and neutrons changes with the composition of high density concrete. Also, for high density concretes, the variation of scattered fluence with angle was very pronounced for neutrons but it changed slightly for photons. The results can be used for design of radiation therapy bunkers.

Open access

Daryoush Khoramian and Bijan Hashemi

Abstract

Purpose: It is well known that the main portion of artificial sources of ionizing radiation to human results from X-ray imaging techniques. However, reports carried out in various countries have indicated that most of their cumulative doses from artificial sources are due to CT examinations. Hence assessing doses resulted from CT examinations is highly recommended by national and international radiation protection agencies. The aim of this research has been to estimate the effective and organ doses in an average human according to 103 and 60 ICRP tissue weighting factor for six common protocols of Multi-Detector CT (MDCT) machine in a comprehensive training general hospital in Tehran/Iran.

Methods: To calculate the patients' effective dose, the CT-Expo2.2 software was used. Organs/tissues and effective doses were determined for about 20 patients (totally 122 patients) for every one of six typical CT protocols of the head, neck, chest, abdomen-pelvis, pelvis and spine exams. In addition, the CT dosimetry index (CTDI) was measured in the standard 16 and 32 cm phantoms by using a calibrated pencil ionization chamber for the six protocols and by taking the average value of CT scan parameters used in the hospital compared with the CTDI values displayed on the console device of the machine.

Results: The values of the effective dose based on the ICRP 103 tissue weighting factor were: 0.6, 2.0, 3.2, 4.2, 2.8, and 3.9 mSv and based on the ICRP 60 tissue weighting factor were: 0.9, 1.4, 3, 7.9, 4.8 and 5.1 mSv for the head, neck, chest, abdomen-pelvis, pelvis, spine CT exams respectively. Relative differences between those values were -22, 21, 23, -6, -31 and 16 percent for the head, neck, chest, abdomen-pelvis, pelvis, spine CT exams, respectively. The average value of CTDIv calculated for each protocol was: 27.32 ± 0.9, 18.08 ± 2.0, 7.36 ± 2.6, 8.84 ± 1.7, 9.13 ± 1.5, 10.42 ± 0.8 mGy for the head, neck, chest, abdomen-pelvis and spine CT exams, respectively.

Conclusions: The highest organ doses delivered by various CT exams were received by brain (15.5 mSv), thyroid (19.00 mSv), lungs (9.3 mSv) and bladder (9.9 mSv), bladder (10.4 mSv), stomach (10.9 mSv) in the head, neck, chest, and the abdomen-pelvis, pelvis, and spine respectively. Except the neck and spine CT exams showing a higher effective dose compared to that reported in Netherlands, other exams indicated lower values compared to those reported by any other country.

Open access

Ouiza Moussous, Toufik Medjadj and Saad Khoudri

Abstract

The aim of this work is to characterize the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter developed at our laboratory, prepared using ultra pure water, by measuring the absorption spectrum, dose response curve, precision and accuracy, energy and dose rate dependency and stability of response. The FBX readings were evaluated by using an accurate spectrophotometer. Experimental data were obtained using various nominal energies 6 MV, 18 MV, 12 MeV, and 15 MeV, including the 60Co γ-rays beam. The calibration of the dosimeters was performed using the ionization chamber as a reference dosimeter. The results show that the FBX dosimeter has a good precision of about 0.2%, no significant energy, dose rate dependence and a linear dose-response relationship in the 1-5 Gy range.

Open access

Karthick Raj Mani, Saumen Basu, Md Anisuzzaman Bhuiyan, Sharif Ahmed, Mostafa Aziz Sumon, Kh Anamul Haque, Ashim Kumar Sengupta, Md Rashid Un Nabi and K. J. Maria Das

Abstract

Objective: The purpose of this study is to demonstrate the synchronous bilateral breast irradiation radiotherapy technique using a single isocenter. Materials and Methods: Six patients of synchronous bilateral breast were treated with single isocenter technique from February 2011 to June 2016. All the patients underwent a CT-simulation using appropriate positioning device. Target volumes and critical structures like heart, lung, esophagus, thyroid, etc., were delineated slice by slice in the CT data. An isocenter was placed above the sternum on the skin and both medial tangential and lateral tangential of the breast / chest wall were created using asymmetrical jaws to avoid the beam divergence through the lung and heart. The field weighting were adjusted manually to obtain a homogenous dose distribution. The planning objectives were to deliver uniform doses around the target and keep the doses to the organ at risk within the permissible limit. The beam energy of 6 MV or combination of 6 MV and 15 MV photons were used in the tangential fields according to the tangential separation. Boluses were used for all the mastectomy patients to increase the doses on the chest wall. In addition to that enhanced dynamic wedge and field in field technique were also used to obtain a homogenous distribution around the target volume and reduce the hot spots. The isocenter was just kept on the skin, such that the beam junctions will be overlapped only on the air just above the sternum. Acute toxicity during the treatment and late toxicity were recorded during the patient’s follow-up. Results: During the radiotherapy treatment follow-up there were no acute skin reactions in the field junctions, but one patient had grade 1 esophagitis and two patients had grade 2 skin reactions in the chest wall. With a median follow-up of 38.5 months (range: 8 - 49 months), no patients had a local recurrence, but one patients with triple negative disease had a distant metastases in brain and died after 28 months. Conclusions: We were able to successfully treat the synchronous bilateral breast using single isocenter radiotherapy while keeping the lung and heart doses within the acceptable dose limits. During the treatment follow-up there were no symptoms of acute skin reactions in the field junction.

Open access

Marzena Morawska-Kaczyńska, Ryszard Dąbrowski, Izabela Drozdyk and Paweł Kukołowicz

Abstract

Purpose: An interplay between detector motion and MLC motion is a source of measurement error, when dose for dynamic arc is measured using a dosimetry system moving relative to the beam central axis during its rotation with a gantry. The purpose of this study is to develop and to evaluate a method of quantitative testing of a sag/flex of such dosimetry systems. Methods: The method is based on evaluation of relative differences between signals measured for two single arc beams, where a narrow slit field is sliding during gantry movement in opposite directions. The component of a measurement error related to the interplay effect was first assessed based on theoretical computer simulations and then on measurements for four dosimetry systems. The sag pattern of EPID and 2D array was extracted from the measurement results. Results: The simulations showed a 4 mm difference in field width and 3.3% difference in relative signals at beam axis between test beams where the slit field swept over 19 cm in opposite directions ( sinusoidal sag pattern with amplitude of 1 mm was assumed). The signal differences exceeding 4% and 5% were measured for EPID and 2D array, respectively. Conclusions: Even relatively small detector sag (less than 1 mm) can produce significant measurement error; therefore, the detector sag test should be an obligatory component of a validation of rotating dosimetry systems used for QA of dynamic arcs.