Browse

31 - 40 of 161 items :

  • Materials Sciences, other x
  • Materials Sciences x
  • Introductions and Overviews x
Clear All
Increasingly Safe, High-Energy Propulsion System for Nano-Satellites

Summary

Numerous attempts have been undertaken to develop propulsion systems for nano-satellite-type spacecrafts to enable their maneuvering in orbits. One of the potentially viable chemical propellant propulsion systems is a hybrid system. The present paper studies propellant composition variants with the metal hydride as fuel that can be chosen for a nano-satellite hybrid propulsion system. It defines key requirements for chemical propellant nano-satellite propulsion systems, and specifies potential propellant pairs based on a compact metal hydride. The study describes basic technical characteristics of a 1U CubeSat propulsion system.

Open access
Innovative Calculation Method of the Productivity of Vibrating Screens Used in Mineral Aggregates Sorting

Abstract

In the process of preparing cement or asphalt concrete – frequently used in ways, roads and access road construction, it is necessary to sort out poly-dispersed granular mixtures from bilge deposits or quarries. The mechanical sieving performs the separation of the granules on dimensional sorts (the size of graded grains can be 1... 70 mm) by means of machines called screeners. In the case of vibrating screeners, the working body (the sieve) presents a vibratory movement that ensures a high productivity of the screening machine and a very good quality of the final products obtained. The article studies the productivity of the vibrating screen used in mineral aggregates sorting process obtained by different methods. In this regard, a pragmatic simplified formula called Pragma is proposed, a formula which was tested with good results in situ experiments done on a bi-mass vibrating screen in a pilot station.

Open access
Modal Competition and Complementarity: Cost Optimization at End-User Level

Abstract

The paper aims to identify possible methods for balancing the allocation of transport flow on modal subsystems in order to efficiently use the infrastructures and reduce the negative effects of today’s unbalance. The aspects of intermodal competition are reviewed, considering the economic concepts regarding the substitutability of transportation services, conformation degree to the perfect competition model and the nature of cross elasticity demand.

A top-down analysis over the whole infrastructure assembly is performed. The results, under the presumption of valid work hypothesis, indicated that for further analysis the set of networks transferring material flows can be assumed as disconnected from the other networks sets transferring energy, informational and values flows.

The second part of the paper develops, for that disconnected networks, a generalized cost optimization model for multimodal transportation, where the comfort and safety are accounted. Thus, the performance of the existing algorithms based only on trip length, trip duration and energy consumption can be significantly improved. Additionally, the author proposes three new independent types of modal analysis that allow end-users and companies involved in transport organization to optimize their modal choice and the whole transport process organization.

Open access
Preliminary Studies to Use Textile Fibers Obtained from Recycled Tires to Reinforce Asphalt Mixtures

Abstract

The use of crumb rubber in the modification of asphalt has occurred because of the problems related to disposal of scrap tires. However, the use of scrap tires in asphalt pavements, known as asphalt rubber pavements, can minimize environmental impacts and maximize conservation of natural resources. The textile fibers from recycled tires are typically disposed of in landfills or used in energetic valorization, but similar to other fibers, they can be used as a valuable resource in the reinforcement of engineering materials such as asphalt mixtures. Thus, this work aims at studying the use of textile fibers recycled from ground tires in the reinforcement of conventional asphalt mixtures. The application of textile fibers from ground tires was evaluated through laboratory tests on specimens extracted from slabs produced in the laboratory. Indirect tensile tests were performed on a series of nine asphalt mixtures with different fiber and asphalt contents and compared with a conventional mixture. The results obtained from a 50/70 pen asphalt were used to define three asphalt mixture configurations to be used with 35/50 pen asphalt. The results indicate that the textile fibers recycled from used tires can be a valuable resource in the reinforcement of asphalt mixtures.

Open access
Propulsion System Modelling for Multi-Satellite Missions Performed by Nanosatellites

Abstract

Progress in miniaturization of satellite components allows complex missions to be performed by small spacecraft. Growing interest in the small satellite sector has led to development of standards such as CubeSat, contributing to lower costs of satellite development and increasing their service competitiveness. Small satellites are seen now as a prospective replacement for conventional sized satellites in the future, providing also services for demanding users. New paradigms of multi-satellite missions such as fractionation and federalization also open up new prospects for applications of small platforms.

To perform a comprehensive simulation and analysis of future nanosatellite missions, an adequate propulsion system model must be used. Such model should account for propulsion solutions which can be implemented on nanosatellites and used in multi-satellite missions.

In the paper, concepts of distributed satellite systems (constellations, formations, fractionated and federated) are described with a survey of past, on-going and planned multi-satellite nanosatellites missions. Currently developed propulsion systems are discussed and the models of propulsion systems embedded in the WUT satellite simulation model are presented.

Open access
Simultaneous Influence of the Track Axis Curvature and the Support Line Obliquity at Railway Bridge Superstructures with Steel Beams Embedded in Concrete

Abstract

For new railway bridges with small spans (L ≤ 35.00 m) superstructures with steel beams embedded in concrete are recommended and used, which can ensure the requirements of strength and especially stiffness, regardless of velocity.

In all the design prescriptions used so far for superstructures with steel beams embedded in concrete, and even in the technical literature, there is little information and data on the influence of the support line obliquity and the track axis curvature in the design and calculation of these types of structures.

In the design code, if certain conditions related to the geometry of the superstructure are met (obliquity, curvature) the calculation is a simplified one, made on a single isolated longitudinal beam of the deck; otherwise, if the conditions are not met, finite element program analysis is recommended.

The article aims to study the situations in which the requirements of the design prescriptions are not met.

Open access
Testing the Functionality and Performance of a Rail Damper

Abstract

The rail dampers are mechanical devices which work as dynamic absorbers to reduce the rail vibration and rolling noise. The paper shows the experimental results from the functionality and performance testing of an experimental demonstrative rail damper. The vibration attenuation takes the highest values, namely 6-22 dB, between 160 and 1000 Hz.

Open access
The Accuracy and the Printing Resolution Comparison of Different 3D Printing Technologies

Abstract

The article presents a research conducted with the project: ‘Additive technology used in conduction with optical methods for rapid prototyping of 3D printed models’ [13]. In this article selected three different 3D printing technologies: Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS) and Material Jetting (MJ). Each of them was tested paying special attention to accuracy and resolution of printed elements. Accuracy tests were conducted on the reference specimens which also showed material texture. These specimens were scanned to verified dimensional deviations of printing methods. Printing resolution was verified on a heat exchanger model which was characterized by complicated structure. The highest accuracy and printing resolution was noticed in the MJ technology, PolyJet method on the Objet Eden 260 VS printing machine and the SUP 707 water soluble support material.

Open access
Bionics in Aviation

Abstract

In the paper bionics as a field of knowledge and inspiration in the aviation technologies is presented. Bionics is a branch of science on the borderline of art and biology that studies the way living organisms work, as well as their structure, in order to use the results to build technical devices. In the introduction part definition of bionics is described. In the next part of this document the aviation technologies inspired by nature is depicted. Then, technologies inspired by the butterfly wing are presented. The paper ends with conclusions.

Open access
Bonding of High Temperature Thermoplastic Carbon Composites with Resistance Welding Technique

Abstract

The article presents ‘state-of-the art’ on joining fibre reinforced thermoplastic composites with the use of resistance welding technique. Their welding process and potential difficulties connected with the process and quality control of a manufactured element are presented. The structure of a typical thermoplastic composite welding stand was also presented. The main welding technology elements were characterized: structure of the resistance element, implementation of the thermal process and pressure application required for joining materials. The paper also presents the required calibration ranges for a technological process with the use of strength test types SLS, DCB, SBS and nondestructive testing of joint with the ultrasonic method.

Open access