Browse

31 - 40 of 1,127 items :

  • Materials Sciences, other x
Clear All
Growth, solvent effect, optical and electrical properties of sodium 4-hydroxybenzenesulfonate dihydrate

Abstract

Single crystal of sodium 4-hydroxybenzenesulfonate dihydrate (Na-4-HBS) was grown from an aqueous solution by slow evaporation method. Powder X-ray diffraction study was carried out to identify the lattice parameters of the crystal. FT-IR spectral analysis confirmed the existence of various functional groups in the compound. The optical transmittance, cut-off wavelength and band gap energy were estimated from the UV-Vis studies. Photoluminescence studies revealed the transition mechanism by optical excitation. The variation of dielectric properties and AC conductivity of the grown crystal with frequency was studied at different temperatures. Measurements of mechanical properties of Na-4-HBS were carried out to find the hardness of the material. The laser induced surface damage threshold and relative second harmonic generation nonlinear optical properties of the grown crystal were studied using Q-switched Nd:YAG laser.

Open access
Hybrid-Optional Effectiveness Functions Entropy Conditional Extremization Doctrine Contributions into Engineering Systems Reliability Assessments

Abstract

In this publication a Doctrine for the Conditional Extremization of the Hybrid-Optional Effectiveness Functions Entropy is discussed as a tool for the Reliability Assessments of Engineering Systems. Traditionally, most of the problems having been dealt with in this area relate with the probabilistic problem settings. Regularly, the optimal solutions are obtained through the probability extremizations. It is shown a possibility of the optimal solutions “derivation”, with the help of a model implementing a variational principle which takes into account objectively existing parameters and components of the Markovian process. The presence of an extremum of the objective state probability is observed and determined on the basis of the proposed Doctrine with taking into account the measure of uncertainty of the hybrid-optional effectiveness functions in the view of their entropy. Such approach resembles the well known Jaynes’ Entropy Maximum Principle from theoretical statistical physics adopted in subjective analysis of active systems as the subjective entropy maximum principle postulating the subjective entropy conditional optimization. The developed herewith Doctrine implies objective characteristics of the process rather than subjective individual’s preferences or choices, as well as the states probabilities maximums are being found without solving a system of ordinary linear differential equations of the first order by Erlang corresponding to the graph of the process. Conducted numerical simulation for the proposed mathematical models is illustrated with the plotted diagrams.

Open access
The impact of composition dependent and process-related properties in the laser cutting of metallic glassy tapes

Abstract

A short survey is reported on the advantageous and disadvantageous properties of soft magnetic glassy tapes to build stator and rotor elements for the increase of motor efficiency. The relative high saturation magnetization and the relative permeability of these alloy groups seem to be promising in this application field. On the other hand, the sample thickness (30 µm) displays limitations in terms of a filling factor. High hardness of tapes hinders the effectivity of mechanical shaping. Laser cutting can be successful as shaping method, presuming that the extension (thickness) of heat affected zone (HAZ) can be successfully reduced below 50µm, avoiding the brittleness evolution.

Open access
Implementation of Six Sigma methodology using DMAIC to achieve processes improvement in railway transport

Abstract

The provision of quality transport services is a prerequisite for the creation of an efficient organization that can meet the expectations and requirements of both the enterprise itself and its customers. From the railway enterprise's point of view, it is necessary to pay attention to the increasingly demanding requirements of its customers in railway passenger transport. This article focuses on identifying defects in rail transport processes that negatively affect ordinary operations. One of the most serious bottlenecks affecting railway transport reliability is the train delay, which fundamentally affects the perception of railway transport. At the same time, it emphasizes the need to apply individual tools according to the DMAIC cycle in order to achieve continuous improvement. The aim of the implemented Six Sigma methodology in railway enterprise is disciplined application of statistical problem-solving tools to recognize the gaps in the transport process and set out individual steps for their gradual removal.

Open access
Influence of Bi on dielectric properties of GaAs1−xBix alloys

Abstract

Pure GaAs and GaAs1−xBix alloys with different Bi ratios (1 %, 2.5 %, 3.5 %) fitted with silver contacts were measured with a dielectric spectroscopy device. Dielectric characterization was performed at room temperature in the frequency range of 0.1 Hz to 1 MHz. GaAs exhibits three relaxation regions corresponding to space-charge, dipolar and ionic polarizations in sequence with increasing frequency while GaAs1−xBix samples show only a broad dipolar polarization in the same frequency range. This result proves the filling of the lattice with Bi through making a new bonding reducing the influence of ionic polarization. This finding supports the previous results concerning optical properties of GaAs1−xBix, presented in the literature.

Open access
Luminescent properties of a novel reddish-orange phosphor Eu-activated KLaSiO4

Abstract

A novel reddish-orange emitting phosphor Eu-activated KLaSiO4 was synthesized by the conventional solid-state reaction at 1200 °C. The luminescence properties of KLaSiO4:Eu phosphor were investigated, and the critical concentration of the activator ion (Eu3+) was established as 0.02 mol per formula unit. Chromaticity coordinates of a typical KLa0.98SiO4:0.02Eu phosphor were x = 0.614 and y = 0.385. The phosphor exhibited reddish-orange luminescence with dominating emission at 612 nm, corresponding to 5D07F2 of Eu3+. Furthermore, the phosphor was characterized by excellent thermal stability, implying its potential use in white light emitting diodes.

Open access
Mechanical Analysis Process of a Coaxial Counter Rotor for Applications in Unmanned Ultra-Light Units

Abstract

As the rotor configuration has the most impact on helicopter properties, the process of determination the assumptions for rotor design is a very important factor in the early stage of rotorcraft development. The following paper presents a mechanical analysis process used at the Institute of Aviation to quickly develop a coaxial rotor prototype applicable in ultra-light unmanned helicopter which has the potential for further improvement of its flight parameters. The article describes the rotor analysis process due to its feasibility based on commercially available solutions, the process of formulating assumptions for the entire structure, MES analysis of the rotor parts all leading to creation of the rotor prototype.

Open access
Mechanical and mathematical research of local deformations of a steel roller shell with a variable geometry of contact surface

Abstract

The article is devoted to solving the fundamental and applied problem of nonlinear structural mechanics of machines by introducing into the drum two additional stop cylinders with supporting rollers at the end and adjustable length, providing a given elliptical or circular shape of a flexible shell with a smoothly variable geometry in the area of its contact with compacted pavement material. Compaction of soil, gravel and asphalt concrete in the sphere of road is not only an integral part of the technological process of the roadbed, road foundation and surface construction, but it is actually the main operation to ensure their strength, stability and durability. The quality, cost and speed of road construction, the possibility of using fundamentally new technologies, structures and materials is largely determined by the availability of modern road machinery.

Open access
Mixed structure Zn(S,O) nanoparticles: synthesis and characterization

Abstract

In the present work, mixed structure Zn(S,O) nanoparticles have been synthesized using solution based chemical coprecipitation technique. Two different zinc sources (Zn(CH3COO)2·2H2O and ZnSO4·7H2O) and one sulfur source (CSNH2NH2) have been used as primary chemical precursors for the synthesis of the nanoparticles in the presence and absence of a capping agent (EDTA). The structural, morphological, compositional and optical properties of the nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transmission infra-red (FT-IR) and UV-Visible (UV-Vis) spectroscopy. XRD revealed the formation of mixed phases of c-ZnS, h-ZnS and h-ZnO in the synthesized nanoparticles. The surface morphology was analyzed from SEM micrographs which showed noticeable changes due to the effect of EDTA. EDX analysis confirmed the presence of zinc, sulfur and oxygen in Zn(S,O) nanoparticles. FT-IR spectra identified the presence of characteristic absorption peaks of ZnS and ZnO along with other functional group elements. The optical band gap values were found to vary from 4.16 eV to 4.40 eV for Zn(S,O) nanoparticles which are higher in comparison to the band gap values of bulk ZnS and ZnO. These higher band gap values may be attributed to the mixed structure of Zn(S,O) nanoparticles.

Open access
Multi-criteria decision analysis for simplified evaluation of clean energy technologies

Abstract

Technology assessment (TA) is not a new concept. High value energy technology identification needs to be followed by a decision process in which all shareholders contribute. A case study on Combined and Heat Power (CHP) technologies considered is presented to illustrate the applicability of fuzzy analytical hierarchy assessment approach (FAHP). The goal of this paper is to identify and evaluate the best variant of CHP technologies using multi-criteria that are technical feasibly and cost effective reflecting performance parameters. The results depict that technology A2 with an overall ranking of 0.438 is the best alternative compared to others. Taking into consideration decision parameters for the section, A1 is found to be relatively most important with a rating of 0.434 with its reliability and cost effectiveness. The presented fuzzy-based methodology is general expected to be used by a diverse target groups in energy sectors.

Open access