Browse

31 - 40 of 2,301 items :

  • Materials Sciences x
Clear All
Strength and Deformation of Sand-Tire Rubber Mixtures (STRM): An Experimental Study

Abstract

Waste material such as used tires is increasing every year, which poses environmental problems. However, such material has been used in several geotechnical applications as alternative lightweight backfill in highway embankments and/or behind retaining walls, providing environmental, economic and technical benefits. These applications require knowledge of engineering properties of soil-tire rubber mixtures. The present study aims to show the possibility of tire rubber usage in sand by evaluating the shear strength and deformability of sand mixed with granulated rubber, in weight percentages between 0 and 50%. The tire rubber content was found to influence the stress-strain and deformation behavior of the mixtures. The shear strength of sand mixed with 10% or 20% tire rubber was higher than that measured for sand only. However, the trend for TRC = 30–50% was different. Samples with a rubber content of 30-50% exhibited a rapid decrease in the stress ratio compared with that of sand. The major principal strain at maximum stress ratio was found to increase with increasing tire rubber content. However, it was observed that the lateral strains (minor and intermediate principal strains) of samples reduced significantly with the addition of tire rubber to the sand.

Open access
Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation

Abstract

At present, the suspended monorail systems constitute a very common means of transportation in the Polish hard coal mines. The main advantages of the suspended monorail include the independence of the route from the working floor surface irregularities and the possibility to transport cargo of significant mass and size.

The masses and dimensions of machines and devices transported via monorail have increased considerably in recent times. This particularly concerns the transport of longwall system elements. In Poland, the maximum speed of suspended monorail travel is 2 m/s. Due to the fact that preparations are currently underway to increase the maximum speed above 2 m/s, it is necessary to inspect what influence it will have on work safety and mining support stability.

Current operational experience and tests have shown that dynamic loads induced by the suspended monorail transportation have a significant influence on the roadway support stability, working protection durability and on the monorail operators. This is particularly true during the emergency braking of a suspended monorail by means of a braking trolley, where the overloads reach 3g.

Bench tests of the selected steel arch and rock bolt support elements utilised in the Polish hard coal mines were conducted in order to determine the resistance of steel arch and rock bolt supports to static and dynamic loads.

The article presents the results of the tests conducted on a steel arch support in the form of the sliding joints of an ŁP/V29 yielding roadway support, which is commonly employed in the Polish hard coal mines. Tests of elements of the threaded bolts with trapezoidal threads over the entire rod length were conducted as well.

The conducted strength tests of steel arch and rock bolt support elements under static and dynamic loading have shown that dynamic loading has decisive influence on the support’s retaining of its stability. Support element stability decreases along with the increase of the impact velocity. This concerns both the steel arch support and the rock bolt support.

Open access
Analysis of crack propagation in a “pull-out” test

Abstract

The article describes a computer analysis of the pull-out test used to calculate the force needed to pull out a rock fragment and determine the shape of this broken fragment. The analyzed material is sandstone and porphyry. The analysis included the first approach to using own subroutine in the Simulia Abaqus system, that is, which task is undertaken to accurately determine the crack path of the Finite Element Method model. The work also contains a description of laboratory tests and analytical considerations.

Open access
Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil

Abstract

The inclusions of geosynthetic materials (fibers, geomembranes and geotextiles) is a new improvement technique that ensures uniformity in the soil during construction. The use of tension resisting discreet inclusions like polypropylene fibers has attracted a significant amount of attention these past years in the improvement of soil performance in a cost-efficient manner. A series of direct shear box tests were conducted on unreinforced and reinforced Chlef sand with different contents of fibers (0, 0.25, 0.5 and0.75%) in order to study the mechanical behavior of sand reinforced with polypropylene fibers. Samples were prepared at three different relative densities 30%, 50% and 80% representing loose, medium dense and dense states,respectively, and performed at normal stresses of 50, 100 and 200 kPa. The experimental results show that the mechanical characteristics are improved with the addition of polypropylene fibers. The inclusion of randomly distributed fibers has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is a function of fiber content, where it has been shown that the mechanical characteristics improve with the increase in fiber content up to 0.75%, this improvement is more significant at a higher normal stress and relative density.

Open access
Slurry shield tunneling in soft ground. Comparison between field data and 3D numerical simulation

Abstract

In urban areas, the control of ground surface settlement is an important issue during shield tunnel-boring machine (TBM) tunneling. These ground movements are affected by many machine control parameters. In this article, a finite difference (FD) model is developed using Itasca FLAC-3D to numerically simulate the whole process of shield TBM tunneling. The model simulates important components of the mechanized excavation process including slurry pressure on the excavation face, shield conicity, installation of segmental lining, grout injection in the annular void, and grout consolidation. The analysis results from the proposed method are compared and discussed in terms of ground movements (both vertical and horizontal) with field measurements data. The results reveal that the proposed 3D simulation is sufficient and can reasonably reproduce all the operations achieved by the TBM. In fact, the results show that the TBM parameters can be controlled to have acceptable levels of surface settlement. In particular, it seems that moderate face pressure can reduce ground movement significantly and, most importantly, can prevent the occurrence of face-expected instability when the shield crosses very weak soil layers. The shield conicity has also an important effect on ground surface settlement, which can be partly compensated by the grout pressure during tail grouting. Finally, the injection pressure at the rear of the shield significantly reduces the vertical displacements at the crown of the tunnel and, therefore, reduces the settlement at the ground surface.

Open access
Impact of g-Load Shift on Temporal Expression Pattern of Apoptosis-linked Proteins in the Rat Mammary Gland

Abstract

Alteration in gravitational load impacts homeorhetic response in rat dams which affects neonatal pup survival. However, the effects of hypergravity (HG) exposure on the abundance of apoptosis-associated proteins in mammary epithelial cells (MECs) have not been characterized. Therefore, we examined whether chronic exposure to HG from midpregnancy alters the abundance of proapoptotic proteins in MECs during the late pregnancy and early lactation. A group of pregnant Sprague Dawley rats were exposed to either HG (2g) or normo-gravity (1g: stationary control [SC]) from days 11 to 20 of gestation (G20). Another set of animals were investigated from day 11 of pregnancy through days 1 and 3 (P1 and P3, respectively) postpartum. Quantitative (pixels [px]/lobule) immunohistochemistry at G20 of Cleaved Caspase-3 (CC-3), Tumor Protein p53 (P53), and vitamin D receptor (VDR) revealed that all the three proteins were increased (p<0.01) in HG rats compared to SC animals. At P1, the HG group had twofold higher (p<0.001) expression of CC-3 relative to the SC group. Approximately, 50% (p<0.001) more VDR was detected in the HG cohorts than SC at P3. These results suggest that a shift in g-load upregulates the expression of key proapoptotic proteins during the pregnancy-to-lactation transition in the rat MECs.

Open access
Musculoskeletal Outcomes from Chronic High-Speed High-Impact Resistive Exercise

Abstract

Subjects (n=13) did 30 workouts with their left leg on an Inertial Exercise Trainer (IET), while their right leg served as an untreated control. Before and after the 30 workouts, they underwent isokinetic strength tests (knee and ankle extensors of both legs) whose peak torque (PT), time to PT (TTPT), and rate of torque development (RTD) values were each analyzed with 2(leg)×2(time)×3(velocity) analysis of variances (ANOVAs), with repeated measures per independent variable. Peak force (PF) and total work (TW) data were measured from each IET workout, and they represent time course strength changes produced by our exercise intervention. PF and TW values for the three IET exercises that comprised each workout were each analyzed with one-way ANOVAs with time as the independent variable. Results included significant ankle and knee extensor PT increases, whereby the left leg achieved higher values at posttesting, but there were no significant TTPT changes and a time effect for ankle extensor RTD. Our data show that PF and TW each had significant increases over time, with the latter exhibiting greater gains over the 30-workout intervention. Our results imply that the IET yields strength gains over time comparable to standard resistive exercise hardware.

Open access
Challenges of ERAU’s First Suborbital Flight Aboard Blue Origin’s New Shepard M7 for the Cell Research Experiment In Microgravity (CRExIM)

Abstract

Cell Research Experiment In Microgravity (CRExIM) was launched aboard Blue Origin’s New Shepard suborbital vehicle on Tuesday, December 12, 2017, from the West Texas Launch Site in Van Horn, Texas. One of the aims of this science experiment was to assess the effects of microgravity on murine T-cells during suborbital flight. These cells were placed in a NanoLab with a data logger that sensed the acceleration, temperature, and relative humidity during preflight, flight, and postflight operations. Some discrepancies in sensor measurement were noticed, and these errors were attributed partly to the difference in sampling rates and partly to the different locations of the sensors, which made it difficult to obtain highly accurate measurements of the accelerations and to correlate both sets of data. This paper discusses the setbacks and lessons learned, which made our team find new alternatives while meeting all milestones as mandated by NanoRacks and Blue Origin. This manuscript highlights these alternatives that led to the success of the mission and gives recommendations that will enable customers to alleviate some of these challenges in future flights.

Open access
Ab initio study of GdCo5 magnetic and magneto-optical properties

Abstract

The full potential linearized augmented plane wave method (FLAPW) including the spin-orbit coupling has been used to study the structural, electronic and magnetic properties of GdCo5 compound. The calculations were performed within the local spin density approximation (LSDA) as well as Coulomb corrected LSDA + U approach. The study revealed that the LSDA + U method gave a better representation of the band structure, density of states and magnetic moments than LSDA. It was found that the spin magnetic moment of Co (2c) and Co (3g) atoms in the studied compound is smaller compared to the one in bulk Co. The optical and magneto-optical properties and the magneto-optical Kerr effect have also been investigated.

Open access
Adsorption and gas sensing properties of CuFe2O4 nanoparticles

Abstract

Spinel ferrite nanoparticles in the form CuFe2O4 were tested for gas sensing applications. Nanoparticles pressed in a disk form were used to construct conductometric gas sensors. The disk was placed between two electrical electrodes wherein the top electrode had a grid structure. The produced sensors were tested against H2S and H2 gases and they were found to be selective and sensitive to H2S concentration as low as 25 ppm. The composition of the nanoparticles was confirmed by X-ray diffraction and energy dispersive X-ray spectroscopy measurements. The crystal structure was verified by both X-ray diffraction and transmission electron microscope. The observations obtained from the experiments demonstrated the high potential of using CuFe2O4 nanoparticles for H2S sensing applications.

Open access