Browse

21 - 30 of 276 items :

  • Mechanics and Fluid Dynamics x
  • Materials Sciences x
Clear All
Effective Width Rule in the Analysis of Footing on Reinforced Sand Slope

Abstract

This paper presents the results obtained from an experimental programme and numerical investigations conducted on model tests of strip footing resting on reinforced and unreinforced sand slopes. The study focused on the determination of ultimate bearing capacity of strip footing subjected to eccentric load located either towards or opposite to the slope facing. Strip footing models were tested under different eccentricities of vertical load. The obtained results from tests conducted on unreinforced sand slope showed that the increase in eccentricity of applied load towards the slope facing decreases the ultimate bearing capacity of footing. Predictions of the ultimate bearing capacity obtained by the effective width rule are in good agreement with those proposed from the consideration of total width of footing subjected to eccentric load. The ultimate bearing capacity of an eccentrically loaded footing on a reinforced sand slope can be derived from that of axially loaded footing resting on horizontal sand ground when adopting the effective width rule and the coefficient of reduction due to the slope. When increasing the distance between the footing border to the slope crest, for unreinforced and reinforced ground slope by geogrids, the ultimate bearing capacity of footing is no more affected by the slope ground.

Open access
Global Stability For Double-Diffusive Convection In A Couple-Stress Fluid Saturating A Porous Medium

Abstract

We show that the global non-linear stability threshold for convection in a double-diffusive couple-stress fluid saturating a porous medium is exactly the same as the linear instability boundary. The optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. It is also found that couple-stress fluid saturating a porous medium is thermally more stable than the ordinary viscous fluid, and the effects of couple-stress parameter (F ) , solute gradient ( S f ) and Brinkman number ( D a ) on the onset of convection is also analyzed.

Open access
Analysis of thin-walled beams with variable monosymmetric cross section by means of Legendre polynomials

Abstract

This article deals with the vibrations of a nonprismatic thin-walled beam with an open cross section and any geometrical parameters. The thin-walled beam model presented in this article was described using the membrane shell theory, whilst the equations were derived based on the Vlasov theory assumptions. The model is a generalisation of the model presented by Wilde (1968) in ‘The torsion of thin-walled bars with variable cross-section’, Archives of Mechanics, 4, 20, pp. 431–443. The Hamilton principle was used to derive equations describing the vibrations of the beam. The equations were derived relative to an arbitrary rectilinear reference axis, taking into account the curving of the beam axis and the axis formed by the shear centres of the beam cross sections. In most works known to the present authors, the equations describing the nonprismatic thin-walled beam vibration problem do not take into account the effects stemming from the curving (the inclination of the walls of the thin-walledcross section towards to the beam axis) of the analysed systems. The recurrence algorithm described in Lewanowicz’s work (1976) ‘Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series’, Applicationes Mathematicae, XV(3), pp. 345–396, was used to solve the derived equations with variable coefficients. The obtained solutions of the equations have the form of series relative to Legendre polynomials. A numerical example dealing with the free vibrations of the beam was solved to verify the model and the effectiveness of the presented solution method. The results were compared with the results yielded by finite elements method (FEM).

Open access
Experimental bearing capacity of eccentrically loaded foundation near a slope

Abstract

Based on the response of small-scale model square footing, the present paper shows the results of an experimental bearing capacity of eccentrically loaded square footing, near a slope sand bed. To reach this aim, a steel model square footing of (150 mm × 150 mm) and a varied sand relative density of 30%, 50% and 70% are used. The bearing capacity-settlement relationship of footing located at the edge of a slope and the effect of various parameters such as eccentricity (e) and dimensions report (b/B) were studied. Test results indicate that ultimate bearing capacity decreases with increasing load eccentricity to the core boundary of footing and that as far as the footing is distant from the crest, the bearing capacity increases. Furthermore, the results also prove that there is a clear proportional relation between relative densities –bearing capacity. The model test provides qualitative information on parameters influencing the bearing capacity of square footing. These tests can be used to check the bearing capacity estimated by the conventional methods.

Open access
Effectiveness of reinforcing an earth structure with a system of counterfort drains over a long-term use

Abstract

The paper evaluates the effectiveness of reinforcing a damaged earth structure with making counterfort drains in its slope. The system of counterfort drains changed the soil properties significantly over a long-term use. The evaluation was based on many years of field and laboratory tests and stability analysis. The field tests concerned the observation of N WST probing resistance change, and the laboratory tests concerned the change in soil consistency and water content. The paper presents the results of tests that were conducted over 13 years.

Open access
Experimental identification of modal parameters for the model of a building subjected to short-term kinematic excitation

Abstract

In this work, the input-output method of dynamic parameters' identification is experimentally tested. A method based on the transformation of a dynamic problem into a static problem by means of integration of the input and output signal was presented. The problem discussed in this article is the identification of the coefficients of stiffness matrices and eigenfrequencies of a discrete dynamic system subjected to kinematic input. The experimental analysis was carried out on a three-storey slab-and-column structure, which constitutes a physical model of a building. The vibrations of the model were excited kinematically by an earthquake simulator. The device has a computer-controlled, movable table top, which can move independently in three directions, that is, horizontally, vertically, and rotationally around the vertical axis.

The aim of the experimental studies presented in this work was to determine the dynamic parameters of the model (stiffness, natural frequencies) using the input-output method in the time domain. Moreover, the results obtained with this method were compared with the results of experimental modal analysis (EMA) in order to verify their correctness. It was assumed that the movement of the base is horizontal and occurs in one direction. Two short-term, irregular kinematic excitations of the construction were considered, and the selected results and conclusions from experimental analyses were presented in this work.

Open access
Numerical solution through mathematical modelling of unsteady MHD flow past a semi-infinite vertical moving plate with chemical reaction and radiation

Abstract

In the present manuscript, unsteady magnetohydrodynamic (MHD) flow over a moving porous semi-infinite vertical plate with time-dependent suction has been studied in the presence of chemical reaction and radiation parameters. Time-dependent partial differential equations in the dimensionless form are solved numerically through mathematical modelling in COMSOL Multiphysics. The results are obtained for velocity, temperature and concentration profiles at different times. Steady state results are also presented for different values of physical parameters. The parameters involved in the problem are useful to change the characteristics of velocity, heat transfer and concentration profiles. The numerical solution of partial differential equations involved in the problem is obtained without sacrificing the relevant physical phenomena.

Open access
Stress states caused in chamber of reinforced concrete grain silo by non-centric emptying on large eccentricities

Abstract

The article presents the analysis of complex stress states in the concrete structure of grain silos, caused by non-centric emptying. The authors present a combination of loads from the pressure of bulk solid on the silo chamber according to Eurocode 1, Part 4 [11], which should be taken into account when emptying on large eccentricities in action assessment class 3 (AAC3) silos. For the example of a cylindrical wheat silo with a height of 25 m and a diameter of 10 m, the researchers carried out an analysis regarding the impact of the size of the eccentric discharge outlet on the distributions of forces and bending moments in a reinforced concrete wall.

Open access
Treatment of a collapsible soil using a bentonite–cement mixture

Abstract

The study of collapsible soils that are generally encountered in arid and semi-arid regions remains a major issue for geotechnical engineers. This experimental study, carried out on soils reconstituted in the laboratory, aims firstly to present a method of reducing the collapse potential to an acceptable level by treating them with different levels of bentonite–cement mixture while maintaining the water content and degree of compactness, thus reducing eventual risks for the structures implanted on these soils. Furthermore, a microscopic study using scanning electron microscopy was carried out to explore the microstructure of the soil in order to have an idea of the phenomena before and after treatment. The results show that treatment with a bentonite–cement mixture improves the geotechnical and mechanical characteristics, modifies the chemical composition of the soil, reduces the collapse potential and the consistency limits. The microstructural study and the X-ray energy dispersive spectroscopy analysis clearly illustrate an association of elementary particles in the soil aggregates, whereby the arrangement of these aggregates leads to the formation of a dense and stable material.

Open access
Low-Strength Substrates and Anthropogenic Soils in Transportation Engineering

Abstract

Road embankments, especially their slopes’ surfaces, must fulfil all the requirements concerning the exploitation criteria after the completion of construction works. This is very important while constructing or modernizing the embankments, based on the substrate including low-strength soils as well as in simple ground conditions (most convenient). The last dozen or so years of intensive construction of transport infrastructure have shown how big is the problem of ensuring the required volumes of qualified soil material for the construction of road embankments or the modernization of railway embankments. The depleting deposits of natural and easily accessible soils for the construction of embankments result in the need to use anthropogenic soils, for example, in the form of aggregates from the recycling of construction waste and other locally available waste materials, usually in the form of slag and ashes from the combined heat and power plants. In such cases, there’s a need to treat transportation earth structures individually in the scope of designing and quality control, because there are no applicable standard provisions in this scope.

This work indicates some of these important contemporary problems of transport engineering, occurring in newly built and modernized road objects, such as the stability of road embankments based on a low-strength substrate, use of anthropogenic soils and materials originating from the recycling of concrete surfaces for the construction of road embankments.

Open access