Browse

21 - 30 of 2,301 items :

  • Materials Sciences x
Clear All
Vibrational, electrical, dielectric and optical properties of PVA-LiPF6 solid polymer electrolytes

Abstract

Solid polymer electrolytes based on polyvinyl alcohol (PVA) doped with LiPF6 have been prepared using solution casting technique. Electrical properties of prepared electrolyte films were analyzed using AC impedance spectroscopy. The ionic conductivity was found to increase with increasing salt concentration. The maximum conductivity of 8.94 × 10−3 S·cm−1 was obtained at ambient temperature for the film containing 20 mol% of LiPF6. The conductivity enhancement was correlated to the enhancement of available charge carriers. The formation of a complex between the polymer and salt was confirmed by Fourier transform infrared spectroscopy (FT-IR). The optical nature of the polymer electrolyte films was analyzed through UV-Vis spectroscopy.

Open access
Effectiveness of GEANT4 in Monte Carlo Simulation Studyofphonon Conduction in Sn Host with Si Nanowire Interface

Abstract

We have explored the effectiveness of Geant4 by using it to simulate phonon conduction in Sn Host with Si Nanowire Interface. Our Monte Carlo Simulation shows that the effectiveness of the phonon conduction Geant4 simulation increases when the system attained a steady state of 100 time steps. We have simulated phonon conduction in Sn host with Si nanowire interface using a Geant4Condensed Matter Physics Monte Carlo simulation toolkit in a low cost and less powerful processing computer machine. In the simulation, phonons were displaced inside a computation domain from their initial positions with the velocities and direction vectors assigned to them. A time step was selected so that a phonon can move at most the length of one sub-cell in one time step. Our phonon conduction analysis of SiSn based alloy using Geant4 showed performance enhancement and reasonable predicted thermal values. Numerical predictions of the thermal profile simulations of the values of the temperature in each cell were all within ten percent of the average temperature of Silicon – Tin.

Open access
Construction and Monitoring of Cement/Bentonite Cutoff Walls: Case Study of Karkheh Dam, Iran

Abstract

Water seepage is one of the most important features of embankment dams. To prevent and reduce seepage, it is necessary to seal the dam. Plastic concrete cutoff walls are one of the most efficient methods in waterproofing the foundation of embankment dams on permeable alluvial substrates. Sufficient resistance to loads, low permeability to maintain dam sealing, high ductility compatible with the foundation and deformation under load without cracking are the main requirements in plastic concrete cutoff walls. In this paper, the construction and implementation of the cutoff wall of Karkheh Dam, which is one the world’s largest water sealing projects, was studied. In addition, a numerical model using Seep-3D software was developed to evaluate the efficiency of the cut-off wall to decrease the seepage over the dam’s foundation. The numerical results validated by instrumentation statistics resulted from 17-years dam operation. According to the results, after the drainage of the reservoir, the cutoff wall optimally reduced the hydraulic gradient by 0.08 from 2.35 and the water leakage by 3.1 m/s from 18.3 m/s.

Open access
Effect of settlement of foundations on the failure risk of the bottom of cylindrical steel vertical tanks for liquids

Abstract

Different types of foundations are used in steel, above-ground cylindrical storage tanks for liquids. If a sand-gravel foundation is used under the entire bottom of the tank or only in the central part of the tank, settlement can be expected, and it increases after many years of operation. The paper presents the typical kinds and types of soil settlements under the bottoms of the tanks, in which different types of foundations were used. Numerical analyses of the effect of the soil settlement on the state of deformations and stresses in steel sheets of the bottom under one of the real tanks, in which different types of foundations and different cases of settlement were assumed. The results of numerical analyses indicated the possibility of evaluating the state of the soil settlement and bottom sheet deformations on the basis of simple measurements of deformations of the lower part of the tank cylinder. These measurements can be very useful in assessing the possible risk of failure of the tank bottom during each period of its operation, as measurements of settlement of the bottom of a filled tank are not feasible in practice. It has been proposed that in each steel tank, the deformation of the cylinder’s sheets should be measured even before the beginning of exploitation, and that in subsequent periodical measurements, the influence of the soil settlement under the tank on the state of the cylinder deformation and bottom’s strain should be assessed more accurately.

Open access
Penetrative convection due to absorption of radiation in a magnetic nanofluid saturated porous layer

Abstract

The present study investigates the onset of penetrative convection in- duced by selective absorption of radiation in a magnetic nanofluid saturated porous medium. The influence of Brownian motion, thermophoresis, and magnetophoresis on magnetic nanofluid treatment is taken into consideration. The Darcy’s model is selected for the porous medium. We conduct a linear stability analysis to examine the onset of instability and evaluate the results for two different configurations, namely, when the layer is heated from below and when the layer is heated from above. The numerical investigations are carried out by applying the Chebyshev pseudospectral method. The effect of the porosity parameter E, parameter Y (represents the ratio of internal heating to boundary heating), Lewis number Le, concentration Rayleigh number Rn, Langevin parameter αL, width of nanofluid layer d, diffusivity ratio η, and modified diffusivity ratio NA is examined at the onset of convection. The results indicate that the convection commences easily with an increase in the value of Y, Le, and NA but opposite in the case with a decrease in the value of E, αL, η and d for both the two configurations. The parameter Rn advances the onset of convection when the layer is heated from below, while delays the onset of convection when the layer is heated from above.

Open access
Effective Friction Angle Of Deltaic Soils In The Vistula Marshlands

Abstract

This article presents the results of laboratory tests on soft, normally consolidated soils from the Vistula Marshlands. Samples of high-plasticity organic soils (muds) taken from 3.2–4.0 m and 9.5–10.0 m depth, as well as peat deposit at 14.0 m, are analysed. Presented case study confirms the applicability of the Norwegian Institute of Technology (NTH) method based on Cone Penetration Tests (CPTU) and allows for a conservative estimation of effective friction angle for muds. The plastification angle equal to 14.5° for organic silt, applied in the modified NTH method, fits well the triaxial test (TX) results. Moreover, the dilative-contractive behaviour according to the CPTU soil classification based on the Robertson’s proposal from 2016 corresponds well with volumetric changes observed in the consolidated drained triaxial compression tests. The internal friction angles of the Vistula Marshlands’ muds and peats are lower in comparison with the database of similar soft soils.

Open access
Axisymmetric Torsion of an Elastic Layer Sandwiched between Two Elastic Half-Spaces with Two Interfaced Cracks

Abstract

The present article examines the problem related to the axisymmetric torsion of an elastic layer by a circular rigid disc at the symmetry plane. The layer is sandwiched between two similar elastic half-spaces with two penny-shaped cracks symmetrically located at the interfaces between the two bonded dissimilar media. The mixed boundary-value problem is transformed, by means of the Hankel integral transformation, to dual integral equations, that are reduced, to a Fredholm integral equation of the second kind. The numerical methods are used to convert the resulting system to a system of infinite algebraic equations. Some physical quantities such as the stress intensity factor and the moment are calculated and presented numerically according to some relevant parameters. The numerical results show that the discontinuities around the crack and the inclusion cause a large increase in the stresses that decay with distance from the disc-loaded. Furthermore, the dependence of the stress intensity factor on the disc size, the distance between the crack and the disc, and the shear parameter is also observerd.

Open access
Effect of Tunnel Progress on the Settlement of Existing Piled Foundation

Abstract

Tunnel construction below or adjacent to piles will affect the performance and eventually the stability of piles due to ground deformation resulting in the movement of piles and changes in the axial force distribution along the piles. A three dimensional finite element analysis using PLAXIS 3D (2013) was performed to study the behaviour of a single pile and 3 x 3 piles group during the advancement of shield tunnelling in ground. The 10-node tetrahedral elements were used to model both the soil and the tunnel lining. The Hardening Soil (HS) model was used to simulate the soil structure interaction at the tunnel-soil interface. An isotropic elastic model was used for the pile, piles cap, tunnel lining and tunnel boring machine shield (TBM). Several parametric studies were attempted including the longitudinal, lateral, and vertical tunnel location relative to pile embedded in different types of soil (clay or sand). The results showed that the pile head settlement increases during the tunnelling advancement in larger values than that for ground surface settlement. A zone of influence was determined in the range of twice the tunnel diameter in the longitudinal direction (forward and backward of the pile), and transverse direction (left and right of the tunnel centreline). If the tunnel boring is kept off this zone then there is no fear of pile collapse.

Open access
Effects of Surrounding Earth on Shell During the Construction of Flexible Bridge Structures

Abstract

A characteristic feature of soil-steel structures is that, unlike in typical bridges, the backfill and the carriageway pavement with its foundation play a major role in bearing loads. In the soil-steel structure model, one can distinguish two structural subsystems: the shell made of corrugated plates and the backfill with the pavement layers. The interactions between the subsystems are modelled as interfacial interactions, that is, forces normal and tangent to the surface of the shell. This is a static condition of the consistency of mutual interactions between the surrounding earth and the shell, considering that slip can arise at the interface between the subsystems. This paper presents an algorithm for determining the internal forces in the shell on the basis of the unit strains in the corrugated plates, and subsequently, the interfacial interactions. The effects of loads arising during the construction of a soil-steel bridge when, for example, construction machines drive over the structure, are taken into account in the analysis of the internal forces in the shell and in the surrounding earth. During construction, the forces in the shell are usually many times greater than the ones generated by service loads. Thus, the analytical results presented in this paper provide the basis for predicting the behaviour of the soil medium under operational loads.

Open access
Fast, non-destructive measurement of roof-bolt loads

Abstract

This paper discusses the pull-out laboratory tests and the monitoring of expansion-shell bolts with a length of 1.82 m. The bolts comprised the KE-3W expansion shell, a rod with a diameter of 0.0183 m and a profiled, circular plate with a diameter of 0.14 m, and a gauge of 0.006 m. The bolts were installed in a concrete block with a compressive strength of 75 MPa. The tests were conducted on a state-of-the-art test stand owned by the Department of Underground Mining of the AGH University of Science and Technology. The test stand can be used to test roof bolts on a geometric scale of 1:1 under static and rapidly varying loads. Also, the stand is suitable for testing rods measuring 5.5 m in length. The stand has a special feature of providing the ongoing monitoring of bolt load, displacement and deformation. The primary aim of the study was to compare the results recorded by two different measurement systems with the innovative Self-Excited Acoustic System (SAS) for measuring stress variations in roof bolts. In order to use the SAS, a special handle equipped with an accelerometer and exciter mounted to the nut or the upset end of the rod was designed at the Faculties of Mining and Geoengineering and Mechanical Engineering and Robotics of the AGH University of Science and Technology. The SAS can be used for nondestructive evaluation of performance of bolts around mining workings and in tunnels. Through laboratory calibration tests, roof bolt loads can be assessed using the in-situ non-destructive method.

Open access