Browse

11 - 20 of 1,729 items :

  • Chemical Engineering x
Clear All

Abstract

The method used to extract copper from its ores depends on the nature of the ore. The main process currently to separate copper from sulphide ores is the smelting process. The concentrated ore is heated strongly with silicon dioxide (silica), calcium carbonate and oxygen enriched air in a furnace or series of furnaces which is carried out using the injection of the air for oxidation the Fe and Si present in the raw material. Oxygen can be produced using several different methods. One of these methods is Air separation process, which separates atmospheric air into its primary components, typically nitrogen and oxygen, and sometimes also argon and other rare inert gases by cryogenic distillation. In this paper, simulation of air separation units (ASUs) was studied using Aspen Hysys®. The obtained simulation and model was validated with the operational data from the Oxinor I of Air Liquide S.A Plant. The ASU was divided into subsystems to perform the simulations. Each subsystem was validated separately and later on integrated into a single simulation. An absolute error of 1% and 1.5% was achieved between the simulated and observed the process variables(s). This indicated that Aspen Hysys® has the thermodynamic packages and required tools to perform simulations in cryogenic processes at industrial scale.

Abstract

Selective catalytic reduction with ammonia (NH3-SCR) is very efficient DeNOx technique. According to some problems with the commercial catalyst, novel one should be prepared. Hydrotalcites are potential precursors of the new catalysts of NH3-SCR. In this paper, several attempts to apply these materials in NH3-SCR are presented.

Abstract

This paper presents an analysis of DSC/TG/DTG thermal studies for PA6 polyamide, coal fuels and polyamide composites with these materials. The test results are aimed at comparing the thermal effects and behavior of these materials under high temperature conditions and are the basics to know of the creation and use of polymer composites with various coal fillers.

Abstract

AZ31D magnesium alloy is widely used in automotive, aircraft, and aerospace applications because of its high strength to weight ratio. However, the softness of the alloy results in higher wear rate and the high activity results in higher corrosion rate. With an aim of reducing the wear rate and corrosion rate of AZ31 alloy, surface composite of AZ31 alloy is fabricated by reinforcing niobium carbide (NbC) by friction stir processing. The microstructure and dispersion of the reinforcements in AZ31-NbC surface composite is analysed by optical microscopy. In addition, the microhardness and tribological characteristics of the developed AZ31-NbC surface composite are investigated. The results demonstrated an increase in microhardness (23.2 %) and the decrease in wear rate (15.6 % for a normal load of 2 kg) in the developed AZ31-NbC surface composite with respect to the base material. The immersion corrosion test was performed to analyse the corrosion rate of the developed AZ31-NbC surface composite in simulated sea water environment (3.5 wt % NaCl solution). The results indicate that the corrosion rate of the developed AZ31-NbC surface composite is higher than that of base material. A comprehensive analysis on the wear and corrosion mechanism of the developed AZ31-NbC surface composite is presented.

Abstract

This research paper presents an analysis of the corrosion properties of steel-reinforced concrete samples during immersion in 3.5 wt. % NaCl aqueous solution by measuring their response both cathodic and anodic polarization in order to determine the corrosion rates in the function of their calcium nitrate inhibitor content. This cheap inorganic inhibitor was added to the concrete mix in concentrations of 1% and 3% by weight of cement in addition to two different superplasticizers (MapeiDynamon SR 31 and Oxydtron). The compressive strengths of the so prepared samples were also checked according to the relevant European standard and were within the acceptable limits, so this inhibitor does not weaken this important property of the concrete samples.

The test results on steel reinforced samples immersed in 3.5 wt. % NaCl aqueous solutions at room temperature showed promising corrosion mitigating effects just after 6 months testing period. After 6 months the lower corrosion currents (i.e. better corrosion resistance) for both types of superplasticizers were observed with those samples which contained 3% calcium nitrate inhibitor. The best result was observed with sample C4 (in this case 3% calcium nitrate was added to the mixture of cement+Oxydtron superplasticizer). The advantageous inhibition mechanism of nitrate anions is also discussed and interpreted.

Abstract

To produce realistic test specimens with realistic flaws, it is necessary to develop appropriate procedure for corrosion flaw production. Tested specimens are made from steels commonly used in power plants, such as carbon steels, stainless steels and their dissimilar weldments. In this study, corrosion damage from NaCl water solution and NaCl water mist are compared. Specimens were tested with and without mechanical bending stress. The corrosion processes produced plane, pitting and galvanic corrosion. On dissimilar weldments galvanic corrosion was observed and resulted to the deepest corrosion damage. Deepest corrosion flaws were formed on welded samples. The corrosion rate was also affected by the solution flow in a contact with the specimens, which results in a corrosion-erosive wear. Produced flaws are suitable as natural crack initiators or as realistic corrosion flaws in test specimens.

Abstract

Polymer monoliths modified by using nanoparticles (NPs) integrate high NP specific surface area with different monolith surface chemistry and high porosity. As a result, they have extensive applications within different fields, whereas nanomaterial-functionalised porous polymer monoliths have elicited considerable interest from investigators. This study is aimed at fabricating organic polymer-based monoliths from polybutyl methacrylate-co-ethylenedimethacrylate (BuMA-co-EDMA) monoliths prior to immobilization of gold or silver metal on the pore surface of the monoliths using reducing reagent (extracts of lemon peels). This was intended to denote a sustainable technique of immobilizing nanoparticles that are advantageous over physical and chemical techniques because it is safe in terms of handling, readily available, environmentally friendly, and cheap. Two different methods were used in the study to effectively immobilize nanoparticles on monolithic components. The outcomes showed that soaking the monolith rod in the prepared nano solution directly and placing it within ovens at temperatures of 80°C constituted the most effective method. Characterisation of the fabricated monolith was undertaken using SEM/EDX analysis, UV-vis. spectra analysis, and visual observation. The SEM analysis showed that nanoparticles were extensively immobilised on the surface polymers. Another peak was attained through EDX analysis, thus confirming the Au atom existence at 2.83% alongside another peak that proved the Ag atom existence at 1.92%. The fabricated components were used as sorbents for purifying protein. The ideal performance was achieved using gold nanoparticles (GNPs) immobilised organic monolith that attained a greater pepsin extraction recovery compared to silver nanoparticles (SNPs) immobilised organic monoliths alongside bare organic-based monolith.

Abstract

Yerba mate is a source of biologically active substances. The aim was to determine whether the place of origin of Yerba and the brewing method have any influence on the levels of Ca, Mg and Fe and antioxidant activity of infusions. Samples were steeped in cold water (25°C) and hot water (three consecutive infusions with 85°C water). Infusions had a high antioxidant activity and high Mg level. The levels of elements and the antioxidant activity were influenced by the brewing method. There were no significant differences in the examined parameters depending on the country of origin. The results on the levels of elements and the antioxidant activity indicate that the most efficient brewing method was infusion in hot water. The highest levels of elements were found in first infusions, with the highest antioxidant activity in the third infusions.

Abstract

This paper describes the separation of oxidation resistant components from the seeds of pomegranate (PSA), grape (GSE) and sea buckthorn (SSE). The anti-oxidation properties of the resultant extracts, used as the natural anti-oxidants for polypropylene (PP), were compared with Irganox1010. The effects of these natural antioxidants on the antioxidant levels of PP samples were estimated by thermal oxidative aging and micromixed rheology, OIT, XRD, SEM, TEM and mechanical properties tests of samples before and after aging. The results show that adding PSA, GSE and SSE can obviously increase the mechanical properties of PP. In addition, the molding stability of polypropylene raw material is prolonged and improved. Moreover, the mechanical properties of the PP samples after 240 h of thermal oxidative aging indicates that, the best results, closest to the anti-oxidation ability of Irganox1010, can be obtained when the additive amount is 0.5% (wt%) for PSE or 0.7% (wt%) for GSE.