Browse

121 - 130 of 843 items :

  • Materials Sciences x
  • Functional and Smart Materials x
  • Nanomaterials x
Clear All
Crystallization, habit modification and control of nucleation of glycine polymorphs from aqueous solutions doped with magnesium sulfate impurity

Abstract

The influence of magnesium sulfate as an additive in the nucleation of α and γ-polymorphs of glycine crystallized from aqueous solutions has been explored for the first time. Based on crystallization experiments, it was concluded that lower concentration of magnesium sulfate, say less than 2 g/mL, favors α-nucleation sites, whereas the optimized concentration of magnesium sulfate impurity to yield -nucleation sites is 2 g/mL and above. The nucleation time span (in days), solubility and pH were measured for α- and γ-nucleation sites in the aqueous solutions doped with magnesium sulfate. The glycine polymorphs α- and γ-single crystals were grown by slow solvent evaporation technique at ambient temperature. Crystal habit of glycine polymorphs was investigated and analyzed using goniometry. The unit cell dimensions and space group of the as-grown crystal were identified by single crystal XRD analysis. Both α- and γ-polymorphs of glycine were characterized structurally by powder XRD studies. The percentage of magnesium present in the grown glycine crystals was estimated by inductively coupled plasma optical emission spectrometry elemental analysis (ICP-OES). The nonlinear optical properties of the γ-glycine crystals were examined by Q-switched high energy Nd:YAG laser. The second harmonic generation output efficiency of the as-grown gamma glycine single crystals was computed to be 1.31 times superior than that of the reference material potassium dihydrogen phosphate (KDP).

Open access
The effect of ligand-to-Eu3+ charge-transfer transitions (LMCT) on the photoluminescence intensity of M2SiO4: Eu3+ (M = Ca, Zn) type phosphors

Abstract

In this study, silicate systems, M2SiO4 (M = Ca, Zn) were produced by solid state reaction and doped with 1 mol% Eu3+ rare-earth ion. Their heat treatments, which were conducted at 1200 °C and above for minimum 3 hours under an open atmosphere, were applied according to the DTA/TG results. Powder X-ray diffraction XRD analyses were performed to determine the phase properties of the phosphor systems after the sintering process. It was proved that the structures of two of the phosphor systems were well formed in except that the Zn2SiO4 had some ZnO secondary phases. The expected photoluminescence (PL) results were presented and the transitions of the Eu3+ ions were observed for both phosphors.

Open access
Effect of nanocrystals concentration on optical and luminescent properties of PVK:ZnSe nanocomposites

Abstract

This work presents a systematic study of the effect of ZnSe nanocrystals (NCs) concentration on the optical and luminescent properties of poly N-vinylcarbazole (PVK) polymer nanocomposites. The ZnSe nanocrystals were synthesized by a simple coprecipitation chemical route, while PVK:ZnSe nanocomposite films were fabricated using the spin coating technique. The samples were characterized by XRD, TEM, SEM, UV-Vis and fluorescence techniques. The X-ray diffraction and TEM studies confirmed the particle size, microstructure and spherical shape of the synthesized nanocrystals. The ZnSe nanocrystals in PVK caused a decrease in optical gap with increasing concentration of nanocrystals. The emission spectra exhibited augmentation in intensity up to 70 wt.% of nanoparticles while further addition resulted in a decrease in luminescence. The structure-property relationships obtained for the present system are important for developing low cost illumination devices.

Open access
Effects of aluminum (Al) incorporation on structural, optical and thermal properties of ZnO nanoparticles

Abstract

In this research article, pure and 1 %, 3 % and 5 % aluminium doped zinc oxide nanoparticles (NPs) were prepared via sol-gel method and then calcined at 500 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to investigate the structural, optical and thermal properties of synthesized pure and Al doped ZnO nanoparticles. Energy dispersive X-ray spectroscopy (EDX) analysis revealed high purity of nanoparticles in the synthesized products without any impurity peaks. Mean dimension of the nanoparticles was ~28 nm and they were hexagonal in shape, according to the images analyzed by transmission electron microscope (TEM). The optical absorption spectra of pure and Al doped ZnO samples studied using UV-Vis spectrometry have been presented and we have observed that the band gap increases with increasing Al concentration. In FT-IR spectra, the broad absorption peaks around 485 cm−1 and 670 cm−1 were assigned to Zn–O vibration. Above 450 °C, the TG curve became flat what means there was no weight loss. In the DSC curve it is seen that the transition at 150 °C was highly exothermic because of structural relaxation and on doping the exothermic peaks became shifted to the lower value of temperature. These types of materials are very useful in optoelectronics applications.

Open access
Fabrication and characterization of Zn doped CuO nanofiber using newly designed nanofiber generator for the photodegradation of methylene blue from textile effluent

Abstract

High aspect ratio, Zn doped copper oxide (Zn-CuO) nanofibers have been fabricated employing a newly designed electrospun coating unit using copper acetate, sodium hydroxide and polyethylene glycol in aqueous state. The prepared Zn doped copper oxide (Zn-CuO) nanofibers were sintered at 400 °C, 500 °C and 600 °C separately and characterized using X-ray diffraction XRD, Fourier transformation infrared spectroscopy FT-IR, scanning electron microscopy SEM, energy dispersive spectroscopy EDS. The average crystallite size was in the range of 28 nm to 30 nm. Optical properties of Zn-CuO nanofibers were analyzed using UV-DRS studies which showed a blue shift in the absorption band. An increase in band gap with the increase in postannealing temperature was observed due to the blue shift in absorption edge of CuO causing enhanced photodegradation. The catalytic properties of the CuO nanofibers were tested using methylene blue in aqueous medium. The influences of parameters responsible for high photodegradation were optimized and the rate of the photodegradation process was calculated using photodegradation kinetics. The reusability test was conducted to find the stability of the fabricated Zn-CuO nanofibers.

Open access
Fabrication, characterization and photocatalytic properties of CdS nanoparticles modified by N-doped TiO2 NTs

Abstract

Highly ordered TiO2 nanotube arrays (TiO2 NTs) were prepared by anodic oxidizing method on a surface of Ti substrate. Fabrication of nitrogen-doped TiO2 nanotube arrays (N-TiO2 NTs) was carried out by immersion in ammonia solution. CdS nanoparticles loaded N-doped TiO2 nanotube arrays (CdS/N-TiO2 NTs) were obtained by successive ionic layer adsorption and reaction (SILAR) technique. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL) emission spectra and ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy (DRS). The results indicate that the TiO2 nanotube diameter and wall thickness are 100 nm to 120 nm and 20 nm to 30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs are not affected by N-doping. Furthermore, CdS nanoparticles are evenly distributed on the surface of TiO2 NTs. Finally, the photocatalytic activity of CdS/N-TiO2 NTs was evaluated by degradation of MO under visible-light irradiation. Compared with TiO2 NTs, N-TiO2 NTs, CdS/N-TiO2 NTs exhibited enhanced photocatalytic properties, and the highest degradation rate of CdS/N-TiO2NTs could reach 97.6 % after 90 min of irradiation.

Open access
Fabrication of temperature sensor based on copper oxide nanowires grown on titanium coated glass substrate

Abstract

Single phase, adherent films of copper oxide nanowires (CuO NWs) were successfully grown on a glass substrate. Titanium nanofilm was pre-coated on the glass substrate to assist the growth of a layer adherent to the substrate. The copper film of 1.5 μm thickness was deposited via physical vapor deposition technique followed by thermal oxidation in air at various temperatures for 4 h. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis) and Fourier transformation infrared (FT-IR) spectroscopy to find the crystal structure, morphology, phases, and optical properties of the deposited films. The CuO NWs film with 60% transmittance at wavelengths greater than 800 nm was obtained. It can be used as an infrared thermal imaging filter and in optoelectronic devices. The fabricated temperature sensor exhibited high sensitivity in the temperature range of 20 °C to 180 °C.

Open access
High transparency and conductivity of heavily In-doped ZnO thin films deposited by dip-coating method

Abstract

Heavily In doped zinc oxide (IZO) thin films were deposited on glass substrates by dip-coating method with different concentrations of indium. The effect of heavy In doping on the structural, morphological, optical and electrical properties of ZnO was discussed on the basis of XRD, AFM, UV-Vis spectra and Hall effect measurements. The diffraction patterns of all deposited films were indexed to the ZnO wurtzite structure. However, high In doping damaged the films crystallinity. The highest optical transmittance observed in the visible region (>93 %) exceeded that of ITO: the absolute rival of the most commercial TCOs. The grain size significantly decreased from 140 nm for undoped ZnO to 17.1 nm for IZO with the greatest In ratio. The roughness decreased with increasing In atomic ratio, indicating an improvement in the surface quality. Among all synthesized films, the sample obtained with 11 at.% indium showed the best TCO properties: the highest transmittance (93.5 %) and the lowest resistivity (0.41 Ωcm) with a carrier concentration of 2.4 × 1017 cm−3. These results could be a promising solution for possible photonic and optoelectronic applications.

Open access
Improving color uniformity and color rending index of remote-phosphor packaging white LEDs by co-doping SiO2 and Sr2Si5N8:Eu2+ particles

Abstract

Based on some advantageous properties, such as fast response time, environment friendliness, small size, long lifetime, and high efficiency, white LEDs are increasingly used in common illumination applications. In this research, by co-doping of redemitting Sr2Si5N8:Eu2+ phosphor and adding SiO2 particles to yellow-emitting YAG:Ce phosphor compounds, a new approach for improving color uniformity and color rending index of remote-phosphor structure white LEDs is proposed and demonstrated. The obtained results clearly indicate that the color rendering index (CRI) and color uniformity (ΔCCT) significantly depend on Sr2Si5N8:Eu2+ concentration. The results provide a potential practical solution for manufacturing remote-phosphor white LEDs (RP-WLEDs) in the near future.

Open access
Investigation of Cu(In, Ga)Se2 solar cell performance with non-cadmium buffer layer using TCAD-SILVACO

Abstract

The purpose of this work is to achieve the best efficiency of Cu(In, Ga)Se2 solar cells by replacing the CdS buffer layer with other nontoxic materials. The simulation tool used in this study is Silvaco-Atlas package based on digital resolution 2D transport equations governing the conduction mechanisms in semiconductor devices. The J-V characteristics are simulated under AM1.5G illumination. Firstly, we will report the modeling and simulation results of CdS/CIGS solar cell, in comparison with the previously reported experimental results [1]. Secondly, the photovoltaic parameters will be calculated with CdS buffer layer and without any buffer layer to understand its impact on the output parameters of solar cells. The simulation is carried out with the use of electrical and optical parameters chosen judiciously for different buffers (CdS, ZnOS and ZnSe). In comparison to simulated CdS/CIGS, the best photovoltaic parameters have been obtained with ZnOS buffer layer. The structure has almost the same open circuit voltage Voc and fill factor FF, and higher short circuit current density Jsc, which results in slightly higher conversion efficiencies.

Open access