Browse

101 - 110 of 827 items :

  • Materials Sciences x
  • Functional and Smart Materials x
  • Materials Characterization and Properties x
Clear All
Temperature dependence of the energy band gap of CuSi2P3 semiconductor using PSOPW method

Abstract

Theoretical formalism based on the orthogonalized plane wave method supplemented by a potential scaling scheme was used to predict the temperature dependence of energy gap of CuSi2P3 semiconductor. A computer code in Pascal was used to perform the variation of fundamental energy gap with temperature in the range of 150 K to 800 K. The dependence of energy gap on temperature for lattice dilation contribution, lattice vibration contribution and total temperature effect were performed separately. The results revealed that, as temperature increases, the top of the valence band and the bottom of the conduction band increase, while the energy band gap decreases. Generally, at low temperatures, the energy gap varies slowly and exhibits a nonlinear dependence and approaches linearity as temperature increases. The calculated energy gap of CuSi2P3 at T = 300 K is 0.4155 eV. The temperature coefficients in the linear region due to lattice dilation contribution, lattice vibration contribution and total temperature effect were calculated as –1.101 × 10−5 eV/K, –1.637 × 10−4 eV/K and –1.7523 × 10−4 eV/K, respectively. Also, the ratio of temperature coefficient of the energy gap due to LV contribution to its value and LD contribution in the linear region is equal to 14.868. That ratio is compared to those of CuGe2P3 and III-V compounds, where those of the latter show a systematic change with Eg. Moreover, the Eg of all the compounds shows a quadratic dependence on the inverse of mean bond length.

Open access
Comparative analysis on microhardness and third order nonlinear optical traits of pure and Nd3+ doped zinc tris-thiourea sulphate (ZTS) crystal

Abstract

Present investigation is aimed to explore the single crystal growth, microhardness and third order nonlinear optical (TONLO) properties of Nd3+ doped zinc tris-thiourea sulphate (ZTS) crystal. The commercial slow solvent evaporation technique has been chosen to grow a good quality ZTS (12 mm × 0.5 mm × 0.3 mm) and Nd3+ doped ZTS (11 mm × 0.6 mm × 0.4 mm) single crystals. Vickers microhardness test has been employed to analyze the influence of Nd3+ dopant on the hardness behavior of ZTS single crystal. The TONLO effects occurring in Nd3+ doped ZTS single crystal have been evaluated by means of Z-scan technique using a He–Ne laser operating at 632.8 nm. The close and open aperture Z-scan configuration have been used to determine the nature of TONLO refraction n2 and absorption β, respectively. The magnitudes of vital TONLO parameters, such as refraction n2, absorption coefficient β, figure of merit and susceptibility χ3 of the Nd3+ doped ZTS single crystal, have been determined using Z-scan transmittance data. The n2, β, and χ3 of Nd3+ doped ZTS single crystal were found to be of the order of 10−10 cm2/W, 10−6cm/W and 10−5 esu, respectively.

Open access
Comparative study of absorption band edge tailoring by cationic and anionic doping in TiO2

Abstract

Titanium dioxide (TiO2) is one of the most favored metal oxide semiconductors for the use as photoanode in photoelectrochemical cells (PEC) splitting the water into hydrogen and oxygen. However, the major impediment is its large bandgap that limits its utilization as photoanode. Doping has evolved as an effective strategy for tailoring optical and electronic properties of TiO2. This paper describes the synthesis of undoped as well as iron (Fe, cationic) and nitrogen (N, anionic) doped nanocrystalline titanium dioxide by sol-gel spin coating method for solar energy absorption in the visible region. All the prepared thin films were characterized by X-ray diffraction and UV-Vis spectroscopy. Doping of both Fe and N into TiO2 resulted in a shift of absorption band edge towards the visible region of solar spectrum.

Open access
Crystal growth of nanostructured zinc oxide nanorods from the seed layer

Abstract

One-dimensional (1D) zinc oxide (ZnO) nanostructures (nanorods) were synthesized on a glass slide and fluorine-doped tin oxide (SnO2/F or FTO) coated glass (FTO/glass) by a wet chemical method. The structural, morphological and optical analyses of the as-deposited ZnO nanostructures were performed by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and UV-Vis spectroscopy, respectively. The XRD results showed that the nanostructures as-deposited on the glass and the FTO/glass substrates were of ZnO wurtzite crystal structure, and the crystallite sizes estimated from the (0 0 2) planes were 60.832 nm and 64.876 nm, respectively. The SEM images showed the growth of densely oriented ZnO nanorods with a hexagonal-faceted morphology. The UV-Vis absorption spectrum revealed high absorbance properties in the ultraviolet range and low absorbance properties in the visible range. The optical energy band gap of the ZnO nanostructure was estimated to be 3.87 eV by the absorption spectrum fitting (ASF) method.

Open access
Crystallization, habit modification and control of nucleation of glycine polymorphs from aqueous solutions doped with magnesium sulfate impurity

Abstract

The influence of magnesium sulfate as an additive in the nucleation of α and γ-polymorphs of glycine crystallized from aqueous solutions has been explored for the first time. Based on crystallization experiments, it was concluded that lower concentration of magnesium sulfate, say less than 2 g/mL, favors α-nucleation sites, whereas the optimized concentration of magnesium sulfate impurity to yield -nucleation sites is 2 g/mL and above. The nucleation time span (in days), solubility and pH were measured for α- and γ-nucleation sites in the aqueous solutions doped with magnesium sulfate. The glycine polymorphs α- and γ-single crystals were grown by slow solvent evaporation technique at ambient temperature. Crystal habit of glycine polymorphs was investigated and analyzed using goniometry. The unit cell dimensions and space group of the as-grown crystal were identified by single crystal XRD analysis. Both α- and γ-polymorphs of glycine were characterized structurally by powder XRD studies. The percentage of magnesium present in the grown glycine crystals was estimated by inductively coupled plasma optical emission spectrometry elemental analysis (ICP-OES). The nonlinear optical properties of the γ-glycine crystals were examined by Q-switched high energy Nd:YAG laser. The second harmonic generation output efficiency of the as-grown gamma glycine single crystals was computed to be 1.31 times superior than that of the reference material potassium dihydrogen phosphate (KDP).

Open access
The effect of ligand-to-Eu3+ charge-transfer transitions (LMCT) on the photoluminescence intensity of M2SiO4: Eu3+ (M = Ca, Zn) type phosphors

Abstract

In this study, silicate systems, M2SiO4 (M = Ca, Zn) were produced by solid state reaction and doped with 1 mol% Eu3+ rare-earth ion. Their heat treatments, which were conducted at 1200 °C and above for minimum 3 hours under an open atmosphere, were applied according to the DTA/TG results. Powder X-ray diffraction XRD analyses were performed to determine the phase properties of the phosphor systems after the sintering process. It was proved that the structures of two of the phosphor systems were well formed in except that the Zn2SiO4 had some ZnO secondary phases. The expected photoluminescence (PL) results were presented and the transitions of the Eu3+ ions were observed for both phosphors.

Open access
Effect of nanocrystals concentration on optical and luminescent properties of PVK:ZnSe nanocomposites

Abstract

This work presents a systematic study of the effect of ZnSe nanocrystals (NCs) concentration on the optical and luminescent properties of poly N-vinylcarbazole (PVK) polymer nanocomposites. The ZnSe nanocrystals were synthesized by a simple coprecipitation chemical route, while PVK:ZnSe nanocomposite films were fabricated using the spin coating technique. The samples were characterized by XRD, TEM, SEM, UV-Vis and fluorescence techniques. The X-ray diffraction and TEM studies confirmed the particle size, microstructure and spherical shape of the synthesized nanocrystals. The ZnSe nanocrystals in PVK caused a decrease in optical gap with increasing concentration of nanocrystals. The emission spectra exhibited augmentation in intensity up to 70 wt.% of nanoparticles while further addition resulted in a decrease in luminescence. The structure-property relationships obtained for the present system are important for developing low cost illumination devices.

Open access
Effects of aluminum (Al) incorporation on structural, optical and thermal properties of ZnO nanoparticles

Abstract

In this research article, pure and 1 %, 3 % and 5 % aluminium doped zinc oxide nanoparticles (NPs) were prepared via sol-gel method and then calcined at 500 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to investigate the structural, optical and thermal properties of synthesized pure and Al doped ZnO nanoparticles. Energy dispersive X-ray spectroscopy (EDX) analysis revealed high purity of nanoparticles in the synthesized products without any impurity peaks. Mean dimension of the nanoparticles was ~28 nm and they were hexagonal in shape, according to the images analyzed by transmission electron microscope (TEM). The optical absorption spectra of pure and Al doped ZnO samples studied using UV-Vis spectrometry have been presented and we have observed that the band gap increases with increasing Al concentration. In FT-IR spectra, the broad absorption peaks around 485 cm−1 and 670 cm−1 were assigned to Zn–O vibration. Above 450 °C, the TG curve became flat what means there was no weight loss. In the DSC curve it is seen that the transition at 150 °C was highly exothermic because of structural relaxation and on doping the exothermic peaks became shifted to the lower value of temperature. These types of materials are very useful in optoelectronics applications.

Open access
Fabrication and characterization of Zn doped CuO nanofiber using newly designed nanofiber generator for the photodegradation of methylene blue from textile effluent

Abstract

High aspect ratio, Zn doped copper oxide (Zn-CuO) nanofibers have been fabricated employing a newly designed electrospun coating unit using copper acetate, sodium hydroxide and polyethylene glycol in aqueous state. The prepared Zn doped copper oxide (Zn-CuO) nanofibers were sintered at 400 °C, 500 °C and 600 °C separately and characterized using X-ray diffraction XRD, Fourier transformation infrared spectroscopy FT-IR, scanning electron microscopy SEM, energy dispersive spectroscopy EDS. The average crystallite size was in the range of 28 nm to 30 nm. Optical properties of Zn-CuO nanofibers were analyzed using UV-DRS studies which showed a blue shift in the absorption band. An increase in band gap with the increase in postannealing temperature was observed due to the blue shift in absorption edge of CuO causing enhanced photodegradation. The catalytic properties of the CuO nanofibers were tested using methylene blue in aqueous medium. The influences of parameters responsible for high photodegradation were optimized and the rate of the photodegradation process was calculated using photodegradation kinetics. The reusability test was conducted to find the stability of the fabricated Zn-CuO nanofibers.

Open access
Fabrication, characterization and photocatalytic properties of CdS nanoparticles modified by N-doped TiO2 NTs

Abstract

Highly ordered TiO2 nanotube arrays (TiO2 NTs) were prepared by anodic oxidizing method on a surface of Ti substrate. Fabrication of nitrogen-doped TiO2 nanotube arrays (N-TiO2 NTs) was carried out by immersion in ammonia solution. CdS nanoparticles loaded N-doped TiO2 nanotube arrays (CdS/N-TiO2 NTs) were obtained by successive ionic layer adsorption and reaction (SILAR) technique. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence (PL) emission spectra and ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy (DRS). The results indicate that the TiO2 nanotube diameter and wall thickness are 100 nm to 120 nm and 20 nm to 30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs are not affected by N-doping. Furthermore, CdS nanoparticles are evenly distributed on the surface of TiO2 NTs. Finally, the photocatalytic activity of CdS/N-TiO2 NTs was evaluated by degradation of MO under visible-light irradiation. Compared with TiO2 NTs, N-TiO2 NTs, CdS/N-TiO2 NTs exhibited enhanced photocatalytic properties, and the highest degradation rate of CdS/N-TiO2NTs could reach 97.6 % after 90 min of irradiation.

Open access