Browse

101 - 110 of 1,099 items :

  • Functional and Smart Materials x
  • Materials Sciences x
Clear All
Microstructure and Mechanical Properties of Ni-WC Thermal Sprayed Composite Coatings

Abstact

The paper presents results of investigations of the microstructure and selected properties of improved composite coatings consisting mainly of nickel matrix reinforced by WC particles. The coatings were obtained by flame spraying of powders mixture on non-alloy steel substrates with following material remelting. Structural investigations were performed using both optical and electron microscopy. The distribution of microhardness and abrasion resistance of deposited coatings were also determined. The complex structure of coatings and resulting high wear withstand are the consequence of an intensive action of liquid matrix with dissolving tungsten carbide particles and formation of secondary phases.

Open access
Nanostructured device based on coated ZnO layer as a window in solar cell applications

Abstract

This work highlights some physical properties related to the influence of aluminum, tin and copper incorporation on nanostructured zinc oxide (ZnO:M; M:Al, Sn and Cu) thin films prepared by ultrasonic spray pyrolysis technique (USP) on glass substrate at 350±5 °C. For the as-grown layers, M- to Zn-ratio was fixed at 1.5 %. The effects of metal doping on structural, morphological, optical and electrical properties were investigated. X-ray diffraction pattern revealed that the as-prepared thin films crystallized in hexagonal structure with (0 0 2) preferred orientation. The surface topography of the films was performed by atomic force microscopy. AFM images revealed inhibition of grain growth due to the doping elements incorporation into ZnO matrix, which induced the formation of ZnO nanoparticles. Optical measurements showed a high transparency around 90 % in visible range. Some optical parameters, such as optical band gap, Urbach energy, refractive index, extinction coeffi-cient and dielectric constant were studied in terms of doping element. Particularly, dispersion of refractive index was discussed in terms of both Cauchy and single oscillator model proposed by Wemple and DiDomenico. Cauchy parameters and single oscillator energy E0 as well as dispersion energy Ed were calculated. Finally, electrical properties were investigated by means of electrical conductivity and Hall effect measurements. The measurements confirmed n type conductivity of the prepared thin films and a good agreement between the resistivity values and the oxidation number of doping element. The main aim of this work was the selection of the best candidate for doping ZnO for optoelectronics applications. The comparative study of M doped ZnO (M:Al, Sn and Cu) was performed. High rectifying efficiency of the Al/n-ZnO/p-Si/Al device was achieved and non-ideal behavior was revealed with n > 4.

Open access
Nanotubular Oxide Layers and Hydroxyapatite Coatings on Porous Titanium Alloy Ti13Nb13Zr

Abstract

The surface condition of an implant has a significant impact on response occurring at the implant-biosystem border. The knowledge of physical-chemical and biological processes allows for targeted modification of biomaterials to induce a specified response of a tissue. The present research was aimed at development of technology composing of obtaining the nanotube oxide layers on a porous titanium alloy Ti13Nb13Zr, followed by the deposition of phosphate coating. The porous substrate (porosity about 50%) was prepared by a selective laser melting of the Ti13Nb13Zr powder with the SLM Realizer 100 equipment. The nanotubular oxide layers were fabricated by electrochemical oxidation in H3PO4 + 0.3% HF mixture for 30 min. at a constant voltage of 20V. The calcium phosphate coatings were formed by the electrochemically assisted deposition (ECAD). The presence of nanotubular oxide layers with their internal diameters ranging from 30 to 100 nm was observed by SEM (JEOL JSM-7600F). The nanotubes have dimensions that facilitated the deposition of hydroxyapatite.

Open access
Optical properties of AlN layers obtained by magnetron sputtering

Abstract

The growth of AlN layers on glass substrates using magnetron sputtering method was performed and the grown layers were subjected to optical measurements. Transmission spectra of the layers grown at different content of N2 in the atmosphere were obtained. The transmission spectra as well as energy gap depended on N2 content. The annealing of the layers in air led to transmission changes and influenced energy gap and refractive index values.

Open access
Polyaniline: tin oxide polymeric nanocomposite films. An electrical and dielectric study

Abstract

A conducting nanocomposite film of 60 nm nano-SnO2-polyaniline (PANI) and polyvinyl alcohol (PVA) has been synthesized and analyzed in terms of AC conductivity and dielectric behavior. The conducting polymer nanocomposite of PANI/60 nm (SnO2) and polyvinyl alcohol (PVA) has been prepared via in situ polymerization technique. The morphology of the nanocomposite film has been studied by SEM. The film has been characterized in terms of DC conductivity. The dielectric behavior and AC conductivity of the nanocomposite film have been investigated in the frequency range of 2 Hz to 90 KHz. The film has high dielectric constant which may be correlated with polarization. It has been observed that both dielectric loss and dielectric constant decrease with an increase in frequency.

Open access
Preparation of nanosized NaA zeolite and its surface modification by KH-550

Abstract

Nanosized NaA zeolite was successfully synthesized by hydrothermal method using tetraethyl orthosilicate (TEOS) and aluminum isopropoxide (AIP) as the main raw materials. The surface modification of NaA zeolite was carried out by silane coupling agent 3-aminopropyltriethoxysilane (KH-550). The effects of silane coupling agent dosage, reaction temperature, reaction time, hydrolysis time and pH value on grafting rate of NaA zeolite were investigated in detail. The zeolites were characterized by XRD, SEM-EDS, FT-IR and TG-DTA. The results showed that the surface of NaA zeolite was modified successfully by KH-550. The optimal modification conditions obtained were as follows: the dosage of coupling agent in 95 % ethanol – 1.6 %, reaction temperature − 70 °C, reaction time – 2 h, hydrolysis time – 20 min, and pH value – 3.5. Under these conditions, the grafting rate of modified NaA zeolite was 3.95 %.

Open access
Role of molybdenum ions in lead zinc phosphate glass system by means of dielectric studies

Abstract

PbO-ZnF2-P2O5 glasses doped with different mol% (0.1 to 1.0) of MoO3 have been prepared. Dielectric properties ∊(ω), tanδ, σAC, of the synthesized samples were calculated from frequency measurements versus temperature. Space charge polarization was used to analyze the temperature and frequency dispersions of dielectric constant ∊(ω) and dielectric loss tanδ. Quantum mechanical tunneling model was employed to explain the origin of AC conductivity. The AC conductivity exhibited an increasing trend with increasing concentration of MoO3 (up to 0.2 mol%) but the activation energy for conduction decreased. The plots of AC conductivity revealed that the relaxation dynamics depends on MoO3 dopant concentration.

Open access
Storage of Hydrogen in Activated Carbons and Carbon Nanotubes

Abstract

Activated carbons and carbon nanotube were synthesized with chemical and microwave processes of olive leaf in media with and without ultrasonic waves, and chemical vapor deposition method, respectively. The samples were characterized by x-ray diffraction, calorimetry, Brunauer, Emmett and Teller method, scanning electron microscopy/energy-dispersive X-ray, and zetasizer nano S90 instruments. The activated carbon synthesized in the ultrasonic bath had a higher surface area. The hydrogen adsorption capacity of carbon structures including activated carbons and carbon nanotube was measured as a function of pressure at 77 K. The hydrogen storage capacity of the carbon nanotube is 300% and 265% higher than the hydrogen storage capacity of activated carbons synthesized in medium without and with ultrasonic waves, respectively. Results showed the correlation between hydrogen storage capacity and specific surface area. The highest H2 storage value was obtained with carbon nanotube at 77 K. As a result, activated carbon and carbon nanotube can be used in hydrogen storage and therefore, the olive leaf can be converted into a high added value product in the energy field.

Open access
Structural and mechanical properties of diglycine perchlorate single crystals

Abstract

Good quality diglycine perchlorate (DGPCL) single crystals were grown by slow evaporation solution growth method using the combination of glycine and perchloric acid in the ratio of 2:1. Single crystal X-ray diffraction and mechanical characterization of the grown single crystals of diglycine perchlorate were analyzed in this article. Lattice parameters, space group and crytal system were found from single crystal X-ray diffraction analysis. All the cell parameters and space group are in a good agreement with the reported values. Mechanical properties, such as Vicker’s microhardness number, work hardening index, standard hardness value, yield strength, fracture toughness, brittleness index and elastic stiffness constant values, were determined using Vicker’s microhardness tester.

Open access
Structural, optical and vibrational study of zinc copper ferrite nanocomposite prepared by exploding wire technique

Abstract

We have synthesized zinc-copper ferrite (ZCFO) employing exploding wire technique (EWT). The X-ray diffraction (XRD) data confirm the formation of single phase spinel ZCFO, which is in good agreement with Fourier transform infrared spectroscopy (FT-IR), UV-Vis, and Raman spectroscopic analyses. It is also clearly seen in the SEM micrographs that the grains in ZCFO ferrite are very rough, which allows adsorption of gas like oxygen and therefore, the material can behave as active sensing surface. The size range of the grains in prepared sample is of 200 nm to 500 nm. The FT-IR spectrum of the nanocomposite consists of two broad bands, one at 580.4 cm−1 due to M–O stretching mode at the tetrahedral site and the other at 400.7 cm−1 due to M–O stretching mode at the octahedral site. The nanoparticles show a UV-Vis absorption band in the wavelength region of 400 nm to 700 nm. The energy band gap for the prepared nanomaterial was estimated to be 3.16 eV. Thus, the ferrite nanocomposite prepared by EWT is optically active. According to present literature, Raman spectroscopy study on zinc-copper ferrite system has not been reported till date. By suitable attributing various Raman modes, we have further confirmed the formation of ZCFO nanophase through the present novel approach.

Open access