Browse

101 - 110 of 417 items :

  • Geosciences x
  • Materials Sciences x
Clear All
Stress–Dilatancy For Crushed Latite Basalt

Abstract

In this article, the stress–dilatancy relationship for crushed latite basalt is analysed by using Frictional State Theory. The relationship is bilinear, and the parameters α and β determine these two straight lines. At the initial stage of shearing, the mean normal stress increment mainly influences breakage, but at the advanced stage, it is shear deformation that influences breakage. At the advanced stage of shearing, the parameter αpt represents energy consumption because of breakage and βpt mainly represents changes in volume caused by breakage during shear. It is also shown that breakage effect is significant at small stress levels and the η-Dp plane is important to fully understand the stress–strain behaviour of crushed latite basalt in triaxial compression tests.

Open access
The concept of modification and analysis of the strength of steel roadway supports for coal mines in the Soma Basin in Turkey

Abstract

The article presents a comparison of the roadway supports currently used in mines in the Soma basin in Turkey with new one proposed by Huta Łabędy and Central Mining Institute (GIG) in terms of resistance parameters and work in conditions of specific loads. The strength analysis of the frame was carried out using the finite element method, using the COSMOS/M program, based on the methodology developed and applied in GIG.

The frame models were built corresponding to their geometry and cross-sectional parameters of the sections used. Beam elements (BEAM3D) were used for building models, which were given cross-sectional parameters of the V36 section. This resulted in three frame models that were loaded in three ways (three load variants). The first option included roof load, acting on the roof bar in a uniform manner, at a length of about 3.0 m. In the second variant, the same load was adopted but the resistance of the side wall was omitted. However, in the third variant, the same roof load was assumed in addition to a side load, acting on the sliding arch, at a length of about 3.0 m, a value corresponding to half the load of the roof. As a result of the calculations carried out, the distribution of reduced stresses in the analysed frames and the maximum load values were obtained.

The proposed roadway supports retain the functionality of the previously used frames in terms of width, height, cross-sectional area of the support and the number of elements. They are characterised by the same weight and at the same time, they have up to 24% more load capacity because of the replacement of straight sections of curved side sections. This treatment was possible by forming individual elements of the arch with two bending radii. The additional load increase was obtained by using S550W steel.

Open access
Numerical 3D simulations of seepage and the seepage stability of the right-bank dam of the Dry Flood Control Reservoir in Racibórz

Abstract

This article presents the results of numerical simulations of seepage through the body of the dam and the reservoir bed. The purpose of this study was to analyse the seepage stability during a flood as well as the impact on seepage stability of the diaphragm wall and gravel columns, on which the dam body is founded in selected segments. Simulations were conducted for three different locations, and the following 3D models of the dum were prepared:

  1. a model containing the front and right-bank part of the dam, for which no diaphragm wall, gravel columns and drainage ditch were provided for
  2. a model of a segment of the right-bank dam including a diaphragm wall, drainage ditch and gravel columns under the dam (two variants with differing diaphragm wall lengths)
  3. a model of the water dam segment accounting for gravel columns and a drainage ditch, but without a diaphragm wall. In the case of founding on gravel columns, the base was modelled as an anisotropic medium in terms of seepage properties, macroscopically equivalent to the actual soil medium.

The numerical model utilises the finite element method. The geometry of the dam and geological substrate was defined in the GIS tools in the form of a 3D model of the terrain and geology of the substrate.

Open access
Pullout Capacity Of Cylindrical Block Embedded In Sand

Abstract

Calculation of pullout capacity of anchoring concrete cylindrical block by finite element method is carried out. 3D model of the block assumes its free rotation. Alternative solutions with one and two pulling forces attached at different heights of the block are considered. Dependency of the ultimate pulling force on the points of its application, the block’s embedment depth as well as contact friction are investigated. Results of FE analysis and simple engineering estimations are compared. The maximum pullout resistance results from FE analysis when the rotation of the block is prevented.

Open access
Comparison of Analysis Specifications and Practices for Diaphragm Wall Retaining System

Abstract

Diaphragm walls are deep embedded earth retaining structures. They also act as a part of the foundation. Geotechnical codes of practice from various countries provide procedures for the analysis of deep foundations. Not many standards are available that directly regulate the analysis of diaphragm walls. This paper compares the analysis of diaphragm walls performed using the foundation codes of different countries. Codes including EN 1997-1, BS 8002, BS 8004, BS EN 1538, AASHTO LRFD Bridge Design Specifications, AS 4678, AS 5100.3, Canadian Foundation Engineering Manual, CAN/CSA S6, IS 9556 and IS 4651 are chosen for the study. Numerical studies and calculations are done using the finite element software Plaxis 2d. Comparative study is performed based on the values of displacements and the forces developed. Study also evaluates the effect of differences in partial safety factors. The outcome of research emphasises the need for development of comprehensive analysis procedures.

Open access
Powered Roof Support – Rock Strata Interactions on the Example of an Automated Coal Plough System

Abstract

The study summarises the operating characteristics of the powered roof support (shield) used in an automated plough system. Investigated longwall support units were controlled automatically or by section engineers and positioned in the ‘saw tooth’ configuration with respect to the longwall face (automatic mode) or linear to the face. Shield pressure data have been analysed in order to identify the impacts of particular factors on the pressure increase profiles. The analysis was supported by the Statistica software to determine the statistical significance of isolated factors. Equations governing the leg pressure at the given time instant were derived and the roof stability factor ‘g’ was obtained accordingly, recalling the maximal admissible roof displacement method recommended by the Central Mining Institute (Poland). In the current mining practice, its values are used in monitoring of strata behaviour as indicators of shield–strata interactions, particularly in the context of roof control in longwall mining. It is vital that the method used should be adapted to the actual conditions under which the longwall is operated. In the absence of such adaptations, there will be major discrepancies in results. The conclusions section summarises the current research problems addressed at the Department of Underground Mining, in which the support pressure data in longwall operations are used. The first aspect involves the delineation of deformations of a longwall main gate about 100 m ahead of the face. The second issue addressed involves the risk assessment of roof rock caving or rock sliding in the tail gate. Another aspect involves the standardisation of local conditions to support the methodology of interpreting shield–strata interactions in the context of work safety. These methods are being currently verified in situ.

Open access
Skin and Toe Resistance Mobilisation of Pile During Laboratory Static Load Test

Abstract

This article shows the mathematical method to determine the lateral stress on the shaft and toe resistance of pile using the new approach. The method was originally invented by Meyer and Kowalow for the static load test. The approximation curve was used for the estimation of both settlement curve and toe resistance curve of the pile. The load applied at the head of the pile is balanced by the sum of two components: the resistance under the toe of the pile and the skin friction. Therefore, the settlement curve is compilation of two factors: the skin friction curve and the resistance under toe curve. The analysis was based on the verification of the methods using laboratory experiments, that is, static load tests. The results of the research allowed to determine the relationship between parameters of the Meyer–Kowalow curve. On the basis of the relationships, it was possible to determine the skin friction and the toe resistance of the pile. Mathematical analysis of curve parameters allowed to determine the influence of the toe resistance on the settlement.

Open access
Acoustic Characteristics of the Cabin of the Research Platform on the Airbag IL-PRC-600m

Abstract

Hovercrafts are a universal means of transport intended for use on flat surfaces such as water, ice, snow, swamp, or sand. They are used in rescue operations and patrolling difficult areas inaccessible to other means of transport. The Institute of Aviation conducted acoustic measurements inside the cabin of the hovercraft to determine the source of the noise and the sound pressure exerted on the pilot and passengers. Assessment of the sources of noise in the cabin is made using the acoustic beamforming method. Assessment of the level of noise to which a pilot is exposed during the operation was prepared on the basis of a standard specifying the requirements and methods of determining occupational noise exposure [1].

The test results indicate a significant penetration of noise from the drivetrain into the cabin. It is recommended that a hovercraft pilot and operators use hearing protection in some specified conditions and during testing. Thus it is pointed out in the summary that additional soundproofing of the cabin is needed. The points of the greatest penetration of noise into the interior have been indicated.

Open access
Analysis of Methods Used to Eliminate the Propeller Slipstream Effect in Single-Engine Aircraft

Abstract

Propeller-driven single-engine aircraft are affected by unsymmetrical flow of air around the fuse-lage, and especially around the vertical stabilizer [1-3]. This unsymmetrical, propeller-induced slip-stream produces sideslip [4,5] that needs to be compensated by the pilot using the rudder [6]. In order to relieve the pilot from this additional task, automatic rudder deflection systems are used that compensate for sideslip by trimming the rudder accordingly. Such compensation algorithms are based on flight parameter measurements.

This paper presents more complex systems used to eliminate the phenomenon in question. In addition, it analyzes the existing solutions, based on patents divided into two groups. The first group deals with active slipstream effect compensation solutions, based on aircraft movement parameters that are derived from aircraft performance characteristics defined in advance. The other group comprises solutions that are based directly on feedback containing actual or estimated sideslip angle values. The most advanced systems rely on a combination of the two methods described above.

Open access
Experimental Verification of Numerical Calculations with the Use of Digital Image Correlation

Abstract

The article presents the results of research work performed under the TEBUK project, aiming primarily to develop a reference methodology for assessing the impact of damage on the strength of structures made of carbon epoxy prepregs. The tests described in the paper were concerned with a fragment of the structure (FS) of the TEBUK project demonstrator, made of carbon epoxy composite, with an artificial circular delamination measuring 40 mm in diameter. Numerical and experimental test of FS have been performed under quasi-static compression load. The buckling of the skin observed in the delamination area, as well as the propagation of the latter were investigated. The numerical calculations have been performed with the use of the commercially available MSC Marc/Mentat calculation suite based on the Finite Elements Methods. Results of the numerical calculations have been compared with experimental measurements made with the use of the Digital Image Correlation (DIC) method. The tests performed aimed to provide a preliminary verification of the numerical model. The results obtained have shown a very good correlation between the numerical and experimental results concerned with critical load levels at which stability of the layers separated by delamination is lost (buckling). The lack of convergence of the numerical model’s results after exceeding the critical load values has rendered it impossible to unequivocally compare the results concerned with propagation of the delamination area.

Open access