Browse

101 - 110 of 542 items :

  • Biomedical Engineering x
Clear All

Abstract

Permanent and temporary implantation of I-125 brachytherapy sources has become an official method for the treatment of different cancers. In this technique, it is essential to determine dose distribution around the brachytherapy source to choose the optimal treatment plan. In this study, the dosimetric parameters for a new interstitial brachytherapy source I-125 (IrSeed-125) were calculated with GATE/GEANT4 Monte Carlo code. Dose rate constant, radial dose function and 2D anisotropy function were calculated inside a water phantom (based on the recommendations of TG-43U1 protocol), and inside several tissue phantoms around the IrSeed-125 capsule. Acquired results were compared with MCNP simulation and experimental data. The dose rate constant of IrSeed-125 in the water phantom was about 1.038 cGy·h−1U−1 that shows good consistency with the experimental data. The radial dose function at 0.5, 0.9, 1.8, 3 and 7 cm radial distances were obtained as 1.095, 1.019, 0.826, 0.605, and 0.188, respectively. The results of the IrSeed-125 is not only in good agreement with those calculated by other simulation with MCNP code but also are closer to the experimental results. Discrepancies in the estimation of dose around IrSeed-125 capsule in the muscle and fat tissue phantoms are greater than the breast and lung phantoms in comparison with the water phantom. Results show that GATE/GEANT4 Monte Carlo code produces accurate results for dosimetric parameters of the IrSeed-125 LDR brachytherapy source with choosing the appropriate physics list. There are some differences in the dose calculation in the tissue phantoms in comparison with water phantom, especially in long distances from the source center, which may cause errors in the estimation of dose around brachytherapy sources that are not taken account by the TG43-U1 formalism.

Abstract

This study aims to investigate and evaluate the secondary photons characterizations under flattening filter (FF) for high radiotherapy quality in terms of fluence, energy fluence, energy fluence distribution, spectral distribution and angular spread distribution of secondary photons, which are mainly coming from primary collimator originated in the whole Linac head. However, the flattening filter illuminates the photons of low energy. After this component, the secondary photons of low energy are coming from flattening filter and secondary collimators that contaminate the dosimetry for deep tumor treatment.

Fluence profile, energy profile and angular spread of secondary photons decreased with FF volume reduction percent but energy distribution and spectral distribution kept almost constant with FF volume reduction. The FF volume reduction allows reducing the secondary photons emergent from FF in number and in energy and it permits to increase the radiotherapy efficiency by decreasing the photons contamination when the cancer is treating.

Abstract

A vast majority of people today spend more time indoors than outdoors. However, the air quality indoors may be as bad as or even worse than the air quality outside. This is due to the continuous circulation of the same air without proper ventilation and filtration systems, causing a buildup of pollutants. As such, indoor air quality monitoring should be considered more seriously. Indoor air quality (IAQ) is a measure of the air quality within and around buildings and relates to the health and comfort of building occupants. To determine the IAQ, computer modeling is done to simulate the air flow and human exposure to the pollutant. Currently, very few instruments are available to measure the indoor air pollution index. In this paper, we will review the list of techniques available for measuring IAQ, but our emphasis will be on indoor air toxicity monitoring.

Abstract

This paper reports the use of low-frequency ultrasound to influence transport in porous hydrogels with a transducer attached in direct contact with the hydrogel. This is a different configuration than for ultrasound-generating devices utilized previously for enhancing transport of molecules. The advantages of the system reported in this manuscript are that (i) much less acoustic power is required to influence the transport in the hydrogel that is in direct contact with the ultrasonic transducer, and (ii) no cavitation is induced in the hydrogel to influence the transport. This system was first tested in bench-top in vitro experiments by quantifying the transport of gold nanoparticles stimulated by low-frequency ultrasound. Then, to provide an in vivo example for potential biotechology applications, the system was demonstrated to be capable of transporting drugs across the tunics of a rabbit eye into the ocular circulation so as to target the transported drug to the outer retina.

Abstract

Translucent monolithic zirconia is the newest option of zirconia-based ceramics, which aimed to substitute the opaque classic yttria-stabilized tetragonal zirconia polycrystal (Y-TZPs) in more demanding esthetic cases.

The aim of this review was to assess the available literature regarding the optical, chemical and mechanical properties of translucent zirconia ceramics.

This systematic review was developed according to the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analysis) guidelines. An electronic literature search was undertaken through Medline (National Library of Medicine) via PubMed to identify relevant articles, published in the interval 2010-2018. The search was limited to the English language publications, in vitro studies of color and microstructure of translucent zirconia material.

Yttria-stabilized tetragonal zirconia polycrystals (Y-TZPs) has excellent mechanical properties, but its intense white color and high opacity represent an esthetic limit. Cubic zirconia represents a new generation of dental ceramics with molecular structure and physical properties different from the conventional zirconia. Dental manufacturers created new formulations of this restorative material, introducing new cubic varieties of zirconia with improved optical properties. Translucent monolithic zirconia provides a new restorative option that combines strength with improved esthetics, due to its increased translucency. Translucent zirconia is indicated for anterior and posterior restorations but should be used carefully for discolored teeth, because the background color can affect the final esthetic appearance of the restoration.

Abstract

Endophytic fungi associated with Nigerian plants have recently generated significant interest in drug discovery programmes due to their immense potential to contribute to the discovery of new bioactive compounds. This study was carried out to investigate the secondary metabolites of endophytic fungi isolated from leaves of Newbouldia laevis, Ocimum gratissimum, and Carica papaya The plants were collected from Agulu, Anambra State, South-East Nigeria. Endophytic fungal isolation, fungal fermentation; and extraction of secondary metabolites were carried out using standard methods. The crude extracts were screened for antimicrobial activities using the agar well diffusion method, and were also subjected to high performance liquid chromatography (HPLC) analysis to identify their constituents. A total of five endophytic fungi was isolated, two from N. laevis (NL-L1 and NL-L2), one from O. gratissimum (SL-L1), and two from C. papaya (PPL-LAC and PPL-LE2). In the antimicrobial assay, the extracts of NL-L2, SL-L1, and PPL-LE2 displayed mild antibacterial activity against both Gram negative and Gram positive test bacteria. PPL-LAC extract showed mild activity only against S. aureus, while no antimicrobial activity was recorded for NL-L1 extract. All the endophytic fungal extracts showed no activity against the test fungi C. albicans and A. fumigatus HPLC analysis of the fungal extracts revealed the presence of ethyl 4-hydroxyphenyl acetate and ferulic acid in NL-L1; ruspolinone in NL-L2; protocatechuic acid, scytalone, and cladosporin in SL-L1; indole-3-acetic acid and indole-3-carbaldehyde in PPL-LE2; and indole-3-acetic acid in PPL-LAC. The findings of this study revealed the potentials possessed by these plants as source of endophytes that express biological active compounds. These endophytes hold key of possibilities to the discovery of novel molecules for pharmaceutical, agricultural and industrial applications.

Abstract

The benefit of biodegradable “green plastics” over established synthetic plastics from petro-chemistry, namely their complete degradation and safe disposal, makes them attractive for use in various fields, including agriculture, food packaging, and the biomedical and pharmaceutical sector. In this context, microbial polyhydroxyalkanoates (PHA) are auspicious biodegradable plastic-like polyesters that are considered to exert less environmental burden if compared to polymers derived from fossil resources.

The question of environmental and economic superiority of bio-plastics has inspired innumerable scientists during the last decades. As a matter of fact, bio-plastics like PHA have inherent economic drawbacks compared to plastics from fossil resources; they typically have higher raw material costs, and the processes are of lower productivity and are often still in the infancy of their technical development. This explains that it is no trivial task to get down the advantage of fossil-based competitors on the plastic market. Therefore, the market success of biopolymers like PHA requires R&D progress at all stages of the production chain in order to compensate for this disadvantage, especially as long as fossil resources are still available at an ecologically unjustifiable price as it does today.

Ecological performance is, although a logical argument for biopolymers in general, not sufficient to make industry and the society switch from established plastics to bio-alternatives. On the one hand, the review highlights that there’s indeed an urgent necessity to switch to such alternatives; on the other hand, it demonstrates the individual stages of the production chain, which need to be addressed to make PHA competitive in economic, environmental, ethical, and performance-related terms. In addition, it is demonstrated how new, smart PHA-based materials can be designed, which meet the customer’s expectations when applied, e.g., in the biomedical or food packaging sector.

Abstract

Rapid development in the field of tissue engineering necessitates implementation of monitoring methods for evaluation of the viability and characteristics of the cell cultures in a real-time, non-invasive and non-destructive manner. Current monitoring techniques are mainly histological and require labeling and involve destructive tests to characterize cell cultures. Bioimpedance measurement technique which benefits from measurement of electrical properties of the biological tissues, offers a non-invasive, label-free and real-time solution for monitoring tissue engineered constructs. This review outlines the fundamentals of bioimpedance, as well as electrical properties of the biological tissues, different types of cell culture constructs and possible electrode configuration set ups for performing bioimpedance measurements on these cell cultures. In addition, various bioimpedance measurement techniques and their applications in the field of tissue engineering are discussed.

Abstract

In biomedical MITS, slight unintentional movements of the patient during measurement can contaminate the aimed images to a great extent. This study deals with measurement optimization in biomedical MITS through the detection of these unpredictable movements during measurement and the elimination of the resulting movement artefacts in the images to be reconstructed after measurement. The proposed detection and elimination (D&E) methodology requires marking the surface of the object under investigation with specific electromagnetically perturbing markers during multi-frame measurements. In addition to the active marker concept already published, a new much simpler passive marker concept is presented. Besides the biological signal caused by the object, the markers will perturb the primary magnetic field inducing their own signals. The markers' signals will be used for the detection of any unwanted object movements and the signal frames corrupted thereby. The corrupted signal frames will be then excluded from image reconstruction in order to prevent any movement artefacts from being imaged with the object. In order to assess the feasibility of the developed D&E technique, different experiments followed by image reconstruction and quantitative analysis were performed. Hereof, target movements were provoked during multifrequency, multiframe measurements in the β-dispersion frequency range on a saline phantom of physiological conductivity. The phantom was marked during measurement with either a small single-turn coil, an active marker, or a small soft-ferrite plate, a passive marker. After measurement, the erroneous phantom signals were corrected according to the suggested D&E strategy, and images of the phantom before and after correction were reconstructed. The corrected signals and images were then compared to the erroneous ones on the one hand, and to other true ones gained from reference measurements wherein no target movements were provoked on the other hand. The obtained qualitative and quantitative measurement and image reconstruction results showed that the erroneous phantom signals could be accurately corrected, and the movement artefacts could be totally eliminated, verifying the applicability of the novel D&E technique in measurement optimization in biomedical MITS and supporting the proposed aspects.

Abstract

Overweight, obese and chronic kidney disease patients have an altered and negative body composition being its assessment important. Bioelectrical impedance analysis is an easy-to-operate and low-cost method for this purpose. This study aimed to compare and correlate data from single- and multi-frequency bioelectrical impedance spectroscopy applied in subjects with different body sizes, adiposity, and hydration status. It was a cross-sectional study with 386 non-chronic kidney disease volunteers (body mass index from 17 to 40 kg/m2), 30 patients in peritoneal dialysis, and 95 in hemodialysis. Bioelectrical impedance, body composition, and body water data were assessed with single- and multi-frequency bioelectrical impedance spectroscopy. Differences (95% confidence interval) and agreements (Bland-Atman analyze) between devices were evaluated. The intraclass correlation coefficient was used to measure the strength of agreement and Pearson’s correlation to measure the association. Regression analyze was performed to test the association between device difference with body mass index and overhydration. The limits of agreement between devices were very large. Fat mass showed the greatest difference and the lowest intraclass and Pearson’s correlation coefficients. Pearson’s correlation varied from moderate to strong and the intraclass correlation coefficient from weak to substantial. The difference between devices were greater as body mass index increased and was worse in the extremes of water imbalance. In conclusion, data obtained with single- and multi-frequency bioelectrical impedance spectroscopy were highly correlated with poor agreement; the devices cannot be used interchangeably and the agreement between the devices was worse as body mass index and fat mass increased and in the extremes of overhydration.