Browse

91 - 100 of 878 items :

  • Business and Economics x
  • Environmental Management x
  • Business Management x
Clear All

Abstract

Gothic architecture is one of the oldest surviving architecture in Slovakia. The Church of Pauline Order in Trebišov has many building phases; its entrance stone portal belongs to the later phase dated about the second half of the 15th century. Paper focuses on an architectural features and geometry of this portal. Portal has clearly a geometrical construction that is compared to another late gothic portal from church in Handlová. Conclusion suggests, that ratio of the entire portal dimensions is close to 4 : 3, proportions of jamb and opening widths are 1 : 4 : 1 part of the overall portal width and there highly probably existed some simple method of determining position of pointed arch arches.

Abstract

In the Middle East and North Africa Jordan is considered as the top medical tourism due to the high level of medical specialized medical centers in the country. In Jordan Ministry of Health monitors, evaluate, enforces, and regulates requirements of medical waste management over medical waste instructions No. 1/2001. Al-Bashir Hospital is the largest hospital in Jordan. It is built on 156 acres and consists of 49 buildings and 80 departments. It has been reported that Al-Bashir Hospital has 1150 medical bed in 2019 and expected to increase to 1500. About 3200 employee and 1100 clean workers give the medical treatment and service for 7000 patient per day and 1.5 million patient per year. The present situation of medical waste management in Al-Bashir Hospital has many problems. The most important is the pressure imposed by heavy population around the incineration unit in the Hospital. Furthermore, the change from incineration to autoclave is faced by high cost of the autoclaves. The quantity of medical waste created by Al-Bashir Hospital is up to 703.8 ton which constitutes about 33% of the total medical waste in Jordan. The high cost of fuel resulted in wrong acts in Al-Bashir Hospital like mixing medical waste with household waste and incineration at lower temperature (about 600 °C). If the incineration unit in Al-Bashir Hospital is closed the expenses will range from US$ 400,000 to 2.5 million.

Abstract

The article focuses on the use of the meshfree numerical method in the field of slope stability computations. There are many meshfree implementations of numerical methods. The article shows the results obtained using the meshfree localized Petrov-Galerkin method (MLPG) – localized weak-form of the equilibrium equations with an often used elastoplastic material model based on Mohr-Coulomb (MC) yield criterion. The most important aspect of MLPG is that the discretization process uses a set of nodes instead of elements. Node position within the computational domain is not restricted by any prescribed relationship. The shape functions are constructed using just the set of nodes present in the simple shaped domain of influence. The benchmark slope stability numerical model was performed using the developed meshfree computer code and compared with conventional finite element (FEM) and limit equilibrium (LEM) codes. The results showed the ability of the implemented theoretical preliminaries to solve the geotechnical stability problems.

Abstract

The aim of the research was to determine changes in the elemental composition of concrete under the influence of exposure to hydrogen sulphide in the existing sewage system. The system operator pointed to significant problems with odours in this system. The research included a fragment of the pressure sewage system. The concentration of gases: hydrogen sulphide, ammonia and methane was measured in selected wells. High concentrations of hydrogen sulphide (over 200 ppm) were recorded in the studies. Concrete samples were taken from the internal walls of the well for testing. The samples were used for a microscopic analysis of their composition, using an electron microscope with an EDS attachment. Also, concrete samples from a new sewage well were tested to compare their elemental composition. Gas measurements confirmed the problem of odors, while the analysis of the elemental composition showed a significant proportion of sulphur (from 7.53% to 42.9%) on the surface of the well compared to the reference sample (0%).

Abstract

Distribution is one of the major sources of carbon emissions and this issue has been addressed by Green Vehicle Routing Problem (GVRP). This problem aims to fulfill the demand of a set of customers using a homogeneous fleet of Alternative Fuel Vehicles (AFV) originating from a single depot. The problem also includes a set of Alternative Fuel Stations (AFS) that can serve the AFVs. Since AFVs started to operate very recently, Alternative Fuel Stations servicing them are very few. Therefore, the driving span of the AFVs is very limited. This makes the routing decisions of AFVs more difficult. In this study, we formulated a multi-objective optimization model of Green Vehicle Routing Problem with two conflicting objective functions. While the first objective of our GVRP formulation aims to minimize total CO 2 emission, which is proportional to the distance, the second aims to minimize the maximum traveling time of all routes. To solve this multi-objective problem, we used ɛ-constraint method, a multi-objective optimization technique, and found the Pareto optimal solutions. The problem is formulated as a Mixed-Integer Linear Programming (MILP) model in IBM OPL CPLEX. To test our proposed method, we generated two hypothetical but realistic distribution cases in Izmir, Turkey. The first case study focuses on an inner-city distribution in Izmir, and the second case study involves a regional distribution in the Aegean Region of Turkey. We presented the Pareto optimal solutions and showed that there is a tradeoff between the maximum distribution time and carbon emissions. The results showed that routes become shorter, the number of generated routes (and therefore, vehicles) increases and vehicles visit a lower number of fuel stations as the maximum traveling time decreases. We also showed that as maximum traveling time decreases, the solution time significantly decreases.

Abstract

In this work considerations concerning eccentrically loaded socket footing with cut-off pyramid shaped socket were presented. As an object of study sloped footing with 1.40 m height, corresponding to the maximum frost depth has been adopted. Knowing that in practice there are no perfect pure axial loads, load applied on the eccentricity has been taken into considerations. Eccentric loads result in footing rotation in the direction of eccentricity and acting load, hence one footing end is imbedding into the ground, whereas second end tries to rise up. To observe that phenomenon, elastic type of support under the foundation was introduced corresponding to the naturally humid sand with medium compaction. Presented in this paper considerations of innovative connection technology between footing and column were based on performed numerical studies. Advantages and disadvantages of presented footing in comparison to normal socket footings solutions were widely discussed. Numerical analyses were performed with the utilization Finite Element Method based SolidWorks software.

Abstract

Wind energy research is dominated by studies of local acceptance (or not) of wind farms and comparative studies at a national level. Research on the spatial differentiation of wind energy developments at the regional level is still insufficient, however. This study provides new empirical evidence for the extent to which regional differences in the deployment of wind energy are related to specific environmental and socioeconomic factors, by a statistical analysis of data for districts in the Czech Republic. Unlike previous studies, we found that the installed capacity of wind energy cannot be well predicted by wind potential, land area and population density in an area. In the Czech Republic, wind farms more likely have been implemented in more urbanised, environmentally deprived coal-mining areas that are affected by economic depression. It seems that in environmentally deprived areas, wind energy is more positively accepted as an alternative source to coal, and the economic motivation (financial benefits for municipalities) can have a greater effect on local acceptance, while public opposition is less efficient due to lower social capital and involvement in political matters. Based on these results, some implications for the planning and spatial targeting of new wind farms are discussed.

Abstract

Due to the fact that dams are considered one of the strategic infrastructures of a country, it is very important to protect it against destructive acts. Accordingly, sensors were used at various points to record structural responses to the dam. Based on the questionnaires completed by experts, accuracy had the score of 3.8 so it was considered as the most important feature of the sensors and the optical fiber sensor with a mean score of 3.93 was selected as the best sensor type among the available ones. For this project, a questionnaire was prepared based on Likert scale and SPSS method was used in TOPSIS software. Then, Seimare concrete double curvature arch dam was simulated in ABAQUS 2017 software and the proper positioning of the sensors for optimum performance was determined based on Finite Element Method analysis and according to structural control criteria such as tension, displacement, strain, velocity and so one.

Abstract

Every year, many people in the world lose their homes due to natural disasters such as earthquakes, floods and so on. In critical situations, the use of prefabricated parts in the buildings has many technical and economic advantages. Hence, today, this technology is widely used in the industrialized societies. The purpose of this research is to provide an appropriate model for speeding up the process of constructing buildings using prefabricated parts in critical conditions. To do this, Analytic Network Process (ANP) approach has been used to select the best option for speeding up construction projects using prefabricated parts and in critical situations. In this study, the intended criteria are quality, time, cost, and strength. The options that we should compare and the best option among them, according to the criteria mentioned, are Lightweight Steel Frame (LSF) parts, steel parts and concrete parts. In order to find this prioritization, the viewpoints of civil engineers and construction experts have been used. It should also be noted that for the ANP method, the Super Decisions software has been used.

Abstract

The propagation of waves generated by load impulse of two FWD types was assessed using test outputs in the form of time history data. The calculated travel time of wave between the receiver in the centre of load and others receivers showed the contradiction with the theory as for the receivers up to 600 (900) mm from the centre of load. Therefore, data collected by the sensors positioned at the distance of 1200 and 1500 mm were used.

The influence of load magnitude on the waves propagation was investigated via the different load force with approximately the same load time and vice versa. Expectations relating to the travel time of waves, depending on the differences of load impulse, were not met. The shorter travel time of waves was detected in the case of the lower frequencies. The use of load impulse magnitude as a possible explanation was not successful because opposite tendencies in travel time were noticed.