Browse

1 - 10 of 287 items :

  • Biomedical Electronics x
  • Engineering x
  • BY LANGUAGE: English x
Clear All

Abstract

Ventricular Assist Devices (VADs) are used to treat patients with cardiogenic shock. As the heart is unable to supply the organs with sufficient oxygenated blood and nutrients, a VAD maintains the circulation to keep the patient alive. The observation of the patient's hemodynamics is crucial for an individual treatment; therefore, sensors to measure quantifiable hemodynmaic parameters are desirable.

In addition to pressure measurement, the volume of the left ventricle and the progress of muscle recovery seem to be promising parameters. Ongoing research aims to estimate ventricular volume and changes in electrical properties of cardiac muscle tissue by applying bioimpedance measurement. In the case where ventricular insufficiency is treated by a catheter-based VAD, this very catheter could be used to conduct bioimpedance measurement inside the assisted heart. However, the simultaneous measurement of bioimpedance and VAD support has not yet been realized, although this would allow the determination of various loading conditions of the ventricle. For this purpose, it is necessary to develop models to validate and quantify bioimpedance measurement during VAD support.

In this study, we present an in silico and an in vitro conductivity model of a left ventricle to study the application of bioimpedance measurement in the context of VAD therapy. The in vitro model is developed from casting two anatomical silicone phantoms: One phantom of pure silicone, and one phantom enriched with carbon, to obtain a conductive behavior close to the properties of heart muscle tissue. Additionally, a measurement device to record the impedance inside the ventricle is presented. Equivalent to the in vitro model, the in silico model was designed. This finite element model offers changes in material properties for myocardium and the blood cavity.

The measurements in the in vitro models show a strong correlation with the results of the simulation of the in silico model. The measurements and the simulation demonstrate a decrease in impedance, when conductive muscle properties are applied and higher impedances correspond to smaller ventricle cross sections.

The in silico and in vitro models are used to further investigate the application of bioimpedance measurement inside the left heart ventricle during VAD support. We are confident that the models presented will allow for future evaluation of hemodynamic monitoring during VAD therapy at an early stage of research and development.

Abstract

Designing proper frontend electronics is critical in the development of highly sophisticated electrode systems. Multielectrode arrays for measuring electrical signals or impedance require multichannel readout systems. Even more challenging is the differential or ratiometric configuration with simultaneous assessment of measurement and reference channels. In this work, an eight-channel frontend was developed for contacting a 2×8 electrode array (8 measurement and 8 reference electrodes) with a large common electrode to the impedance gain-phase analyzer Solartron 1260 (S-1260). Using the three independent and truly parallel monitor channels of the S-1260, impedance of trapped cells and reference material was measured at the same time, thereby considerably increasing the performance of the device. The frontend electronics buffers the generator output and applies a potentiostatic signal to the common electrode of the chip. The applied voltage is monitored using the current monitor of the S-1260 via voltage/current conversion. The frontend monitors the current through the electrodes and converts it to a voltage fed into the voltage monitors of the S-1260. For assessment of the 8 electrode pairs featured by the chip, a relay-based multiplexer was implemented. Extensive characterization and calibration of the frontend were carried out in a frequency range between 100 Hz and 1 MHz. Investigating the influence of the multiplexer and the frontend electronics, direct measurement with and without frontend was compared. Although differences were evident, they have been negligible below one per cent. The significance of measurement using the complex S-1260-frontend-electrode was tested using Kohlrausch's law. The impedance of an electrolytic dilution series was measured and compared to the theoretical values. The coincidence of measured values and theoretical prediction serves as an indicator for electrode sensitivity to cell behavior. Monitoring of cell behavior on the microelectrode surface will be shown as an example.

Abstract

Skeletal muscle mass (SMM) plays an important role in health and physical performance. Its estimation is critical for the early detection of sarcopenia, a disease with high prevalence and high health costs. While multiple methods exist for estimating this body component, anthropometry and bioelectrical impedance analysis (BIA) are the most widely available in low- to middle-income countries. This study aimed to determine the correlation between muscle mass, estimated by anthropometry through measurement of calf circumference (CC) and skeletal mass index (SMI) by BIA. This was a cross-sectional and observational study that included 213 functional adults over 65 years of age living in the community. Measurements of height, weight, CC, and SMM estimated by BIA were made after the informed consent was signed. 124 women mean age 69.6 ± 3.1 years and 86 men mean age 69.5 ± 2.9 years had the complete data and were included in the analysis. A significant positive moderate correlation among CC and SMI measured by BIA was found (Pearson r= 0.57 and 0.60 for women and men respectively (p=0.0001)). A moderate significant correlation was found between the estimation of SMM by CC and by BIA. This suggests that CC could be used as a marker of sarcopenia for older adults in settings in lower-middle-income countries where no other methods of diagnosing muscle mass are available. Although the CC is not the unique parameter to the diagnosis of sarcopenia, it could be a useful procedure in the clinic to identify patients at risk of sarcopenia.

Abstract

The development of biosensors to identify molecular markers or specific genes is fundamental for the implementation of new techniques that allow the detection of specific Deoxyribonucleic acid (DNA) sequences in a fast, economic and simple way. Different detection techniques have been proposed in the development of biosensors. Electrical Bioimpedance Spectroscopy (EBiS) has been used for diagnosis and monitoring of human pathologies, and is recognized as a safe, fast, reusable, easy and inexpensive technique. This study proves the development of a complementary DNA (cDNA) biosensor based on measurements of EBiS and DNA's immobilization with no chemical modifications. The evaluation of its potential utility in the detection of the gene expression of three inflammation characteristic biomarkers (NLRP3, IL-1β and Caspase 1) is presented. The obtained results demonstrate that EBiS can be used to identify different gene expression patterns, measurements that were validated by Quantitative Polymerase Chain Reaction (qPCR). These results indicate the technical feasibility for a biosensor of specific genes through bioimpedance measurements on the immobilization of cDNA.

Abstract

Impedance cardiography (ICG) is a non-invasive method to evaluate several cardiodynamic parameters by measuring the cardiac-synchronous changes in the dynamic transthoracic electrical impedance. ICG allows us to identify and quantify conductivity changes inside the thorax by measuring the impedance on the thorax during a cardiac cycle. Pathologic changes in the aorta, like aortic dissection, will alter the aortic shape as well as the blood flow and consequently, the impedance cardiogram. This fact distorts the evaluated cardiodynamic parameters, but it could lead to the possibility to identify aortic pathology. A 3D numerical simulation model is used to compute the impedance changes on the thorax surface in case of the type B aortic dissection. A sensitivity analysis is applied using this simulation model to investigate the suitability of different electrode configurations considering several patient-specific cases. Results show that the remarkable pathological changes in the aorta caused by aortic dissection alters the impedance cardiogram significantly.

Abstract

Background

Young ballet dancers are at risk of health issues associated with altered nutritional status and of relative energy deficiency in sport compared to the general population.

Aim

To evaluate the nutritional status and body composition in ballet dancers.

Materials and methods

The study group consisted of 40 young ballet dancers (mean age 19.97 years). Height and weight were measured and body mass index was calculated in all subjects (mean BMI value 19.79 kg/m2, SD: 2.051). Body composition was estimated using the bioelectrical impedance method.

Results

The dancers’ fat-free mass was 47.33 kg (SD: 5.064) and, on the average, body fat represented the 15.92% (SD: 16.91) of their body weight.

Conclusions

Ballet dancers, who usually show significantly lower BMI values compared to the general population, also displayed body fat values under the suggested range. Some screening for altered nutritional status should be performed. In addition, education programs should be recommended in young ballet dancers, in order to inform about energy and nutrition requirements for health and training and to prevent malnutrition-related problems.

Abstract

There is a strong need for a non-invasive measurement technique that is capable of accurately identifying the physiological condition change or heterogeneity of subcutaneous adipose tissue (SAT) by localizing the abnormalities within the compartment. This paper aims to investigate the feasibility of Electrical Impedance Tomography (EIT) to assess the interstitial fluid in subcutaneous adipose tissue as an enhancement method of bioelectrical impedance spectroscopy (BIS). Here, we demonstrate the preliminary result of EIT with a wearable 16 electrodes sensor. The image-based reference EIT with fat weighted threshold method is proposed. In order to evaluate the performance of our novel method, a physiological swelling experiment is conducted, and Multi-Frequency Bioelectrical Impedance Analysis (MFBIA) is also applied as a comparison with EIT results. The experimental results showed that the proposed method was able to distinguish the physiological swelling condition and effectively to remove the unexpected background noise. Furthermore, the conductivity variation in the subcutaneous layer had a good correlation with extracellular water volume change from MFBIA data; the correlation coefficient R2 = 0.927. It is concluded that the proposed method provides a significant prospect for SAT assessment.

Abstract

Statistics show that there is an increase in production of cars every year worldwide. Similarly, there is an increase in car theft attempts and carjacking cases worldwide. This paper is meant to increase the user’s situational awareness. The user is able to check for surrounding of the vehicle and judge for himself/ herself before approaching the vehicle. Raspberry Pi is used as the controller in this paper. A Universal Serial Bus (USB) webcam plugged into the Raspberry Pi enables the user to view the images captured in real time by use of an application installed on the user’s smartphone.

OPEN ACCESS

Abstract

The study aims for the development of a system for cellular extraction, developed at the level of an experimental model, with the help of which the user can generate a series of sessions of cellular extraction from the cultures of specific cells. To move to the prototype level, the system that will materialize in an specialized equipment for cell extraction and inter / intra-cell injection needs a developed user interface, so that the equipment as a whole is easy to use by the human operator. The present project provides a viable technical interfacing solution for the above mentioned equipment, using the Raspberry Pi hardware resources and the Python C. software resources. Demonstrating the capability of the Raspberry Pi - Python technical tandem for the biomedical equipment to be built is the essence of this project, and the further development of a specialized user interface is a natural step.

Abstract

Some dynamical linear elements including on-off elements such as electro-mechanical relays and electronic components used in switching mode for some feedback control systems can present special features such as the capability to autonomously generate stable self-oscillations. This paper concerns the comparison of two approaches enabling to determine the frequency of self-oscillations in these systems. We examine Tsypkin’s approach which can provide analytical solutions to determining the frequency of existing self-oscillations. On the other hand, we examine the Describing Function (DF) approach which has been developed as an alternative to approximate these solutions.

We will compare these two approaches for nonlinear systems of first and second orders. We will examine particularly the possibilities and limits of each approach for calculating the self-oscillations. Simulation of these systems will be performed to visualizes their behaviors. An experimental feedback control system based on electronic circuits used in switching mode has been built as a setup enabling testing and envisioning some applications.