Browse

You are looking at 1 - 10 of 97 items for :

  • Basic Medical Science x
  • Endocrinology, Diabetology x
Clear All
Open access

Mohammad Javad Hoseinpour, Alireza Ghanbari, Nahid Azad, Ali Zare, Shabnam Abdi, Ensieh Sajadi, Hojjat-Allah Abbaszadeh, Reza Mastery Farahani and Mohammad-Amin Abdollahifar

Abstract

Objective. Polycystic ovary syndrome (PCOS) is a common and multifactorial disease associated with female factor infertility. Ulmus minor bark (UMB) is one of the medicinal plants used in Persian folklore as a fertility enhancer. In the current study, we aimed to elucidate the effect of UMB hydro-alcoholic extract on histological parameters and testosterone condition in an experimental model of PCOS rats.

Methods. Thirty female rats were randomly divided into five groups: (1) control, (2) vehicle, (3) PCOS/50 mg [6 mg/kg dehydroepiandrosterone (DHEA) + 50 mg/kg UMB hydro-alcoholic extract], (4) PCOS/150 mg (6 mg/kg DHEA + 150 mg/kg UMB hydro-alcoholic extract), and (5) PCOS (6 mg/kg DHEA). All interventions were performed for 21 days. Afterwards, stereological analysis was done for determination of ovarian volume and follicle number. The serum level of testosterone was measured by ELISA kit.

Results. UMB hydro-alcoholic extract improved the total number of the corpus luteum in the treatment groups when compared to the PCOS group (p<0.05). PCOS/150 mg and PCOS/50 mg groups showed significantly lower total number of the primordial, primary, and secondary follicles as well as testosterone level compared to the PCOS group (p<0.05). The total number of antral follicles and volume of ovary did not differ significantly between groups.

Conclusion. UMB extract may be an effective and good alternative in improving PCOS histo-logical and testosterone disturbances although further studies are warranted to confirm the safety of UMB plant in human.

Open access

Alexander Kiss and Jana Osacka

Abstract

Objective. The aim of the present study was to demonstrate the spatial relationship between the c-Fos immunoreactive cells elicited by an acute treatment with neuroleptics including amisulpride (AMI), olanzapine (OLA), quetiapine (QUE), and aripiprazole (ARI) and enkephalinergic (ENK), substance P (SP), and tyrosine hydroxylase (TH) innervation fields in the rat septum.

Methods. Male Sprague Dawley rats received a single injection of OLA (5 mg), ARI (10 mg), AMI (20 mg), QUE (15 mg/kg/b.w.). Ninety min after antipsychotics administration, the animals were transcardially perfused with a fixative and the brains cryocut into serial coronal sections of 35 µm thickness. The sections were processed for c-Fos staining using an avidin-biotin-peroxidase complex and visualized by nickel intensified diaminobenzidine to reach black endproduct. Afterwards, the sections were exposed to ENK, SP, and TH antibodies and the reaction product visualized by biotin-labeled fluorescent AlexaFluor 564 dye. The data were evaluated from the sections either simultaneously illuminated with fluorescent and transmission microscope beams or after merging the separately illuminated sections in the Adobe Photoshop 7.0 software.

Results. ENK, SP, and TH displayed characteristic spatial images formed by a dense accumulation of immunoreactive fibers and terminals on the both sides of the septum. A dense plexus of axons formed by ENK and SP immunopositive terminals were situated predominantly in the lateral, while TH ones more medial portion of the septum. QUE and AMI activated distinct amount of c-Fos expression in cells located within the SP-immunoreactive principal innervation field. The OLA effect on the c-Fos expression was very pronounced in the ventral TH-labeled principal innervation field including the space between the ENK field ventral portion and the dorsal margin of the accumbens nucleus shell. Generally, the occurrence of c-Fos cells in the ENK-immunoreactive principal innervation field, in comparison with the surrounding septal area, was less abundant after all of the four antipsychotics treatments.

Conclusion. The data of the present study indicate that ENK, SP, and TH innervation fields may influence separate populations of septal cells activated by AMI, OLA, QUE, and ARI and that each of these region-differently innervated cells may be associated with the functional heterogeneity of the individual lateral septal nuclei.

Open access

Paulina Pidikova, Pavel Svitok and Iveta Herichova

Abstract

Objective. Epidemiological studies confirm that hypertensive patients respond differently to renin-angiotensin system (RAS) inhibition depending on their gender. The aim of present work is to focus on sex-dependent differences in RAS regulation under conditions of increased salt intake.

Method. To investigate RAS, we measured the expression of angiotensinogen (Agt) mRNA, angiotensin receptor type 1 (AT1) mRNA and mitochondria assembly receptor (MasR) in the liver of rats under control conditions and after feeding with a salt diet (2% NaCl). In parallel, vascular endothelial growth factor A (VEGF-A) mRNA was analyzed.

Results. Regression analysis revealed sex-dependent differences in the correlation between mRNA expression of AT1 and that of Agt, MasR and VEGF-A in both groups. There was a significant negative correlation between AT1 and Agt mRNA expression in the male control group, but this correlation disappeared in males exposed to a salt diet. In females, AT1 and Agt expression correlated only in the group exposed to the salt diet. In control males, there was a borderline trend to correlation between AT1 and MasR mRNA expression. The correlation between AT1 and VEGF-A mRNA expression was significant only in the control females, however, after exposure to a salt diet, this correlation diminished.

Conclusions. We hypothesize that RAS components expression is compensated differently in males and females. The observed loss of compensatory relationships in RAS between AT1 and Agt and AT1 and MasR in male rats under a salt diet can contribute to the differences observed in human with hypertension associated with an unhealthy diet.

Open access

Frederick-Anthony Farrugia and Anestis Charalampopoulos

Abstract

Pheochromocytomas are rare tumors originating in the adrenal medulla. They may be sporadic or in the context of a hereditary syndrome. A considerable number of pheochromocytomas carry germline or somatic gene mutations, which are inherited in the autosomal dominant way. All patients should undergo genetic testing. Symptoms are due to catecholamines over production or to a mass effect. Diagnosis is confirmed by raised plasma or urine metanephrines or normetanephrines. Radiology assists in the tumor location and any local invasion or metastasis. All the patients should have preoperative preparation with α-blockers and/or other medications to control hypertension, arrhythmia, and volume expansion. Surgery is the definitive treatment. Follow up should be life-long.

Open access

Tolulope Oyesola, Bolanle Iranloye and Olufeyi Adegoke

Abstract

Objective. This study was designed to investigate the effect of sublethal doses (10, 60, and 120 mg/kg of pirimiphos-methyl on implantation and pregnancy in female Sprague-Dawley rats. Pirimiphos-methyl is a pesticide widely used worldwide, especially in Africa to protect food against pests and has gained widespread acceptance.

Methods. Pregnant Sprague-Dawley rats used for this study had access to food and water ad libitum and were divided into a control group and three experimental groups based on dose of chemical given. The pregnant rats were given pirimiphos-methyl orally on days 1–5, 1–7, 7–18th day of gestation and from day 1 to term. Implantation studies were carried out on days 6 and 8 of pregnancy, while the fetal parameters were ascertained on day 19 of pregnancy and at term. Serum levels of progesterone and estradiol were measured on days 6, 8 and 19 of pregnancy.

Results. Sublethal administration of pirimiphos-methyl showed decreased number of implantation sites on days 6 and 8, fetal weight, crown-to-rump length, length of umbilical cord and placenta weight (day 19), birth weight, litter size and total number (at term) in rats administered with pirimiphos-methyl when compared with control.

Conclusion. Administration of pirimiphos-methyl resulted in a reduced implantation rate due to decreased uterine receptivity caused by an imbalance in the level of estradiol and progesterone and impaired reproductive outcome during pregnancy.

Open access

Eiji Kutoh, Jyunka Hayashi and Alexandra N. Kuto

Abstract

Objective. While dulaglutide has been approved inpatients with type 2 diabetes (T2DM) in combination with insulin, it has not been studied in insulin-deficient patients, not whether they have type 1 diabetes (T1DM) or T2DM. The aim of this study is to assess the efficacy and safety of dulaglutide 0.75 mg/once weekly (QW) in patients with absolute insulin deficiency (n=10).

Subjects and Results. Significant reductions of HbA1c (9.30±1.03% to 8.61±1.21%; p<0.02) and body mass index (BMI; 23.61±3.95 to 23.41±4.24; p<0.02) levels were observed at 3 months with the addition of dulaglutide to the existing pharmacotherapy. However, in all the patients, post-meal C-peptide levels remained undetectable. One patient had gastrointestinal adverse events and discontinue dulaglutide within the first month. One patient was a non-responder, who had little if any changes in HbA1c levels at 3 months.

Conclusions. The results indicate that dulaglutide is effective in patients with T1DM or T2DM with absolute insulin deficiency, though gastrointestinal adverse events might be of concern. The improvements in glycemic control could not be due to enhanced insulin secretion, but may be as a result of a combination of the other effects of glucagon like peptide 1 (GLP-1), such as postprandial glucagon suppression, delayed gastric emptying, and weight loss.

Open access

Somchit Eiam-Ong, Mookda Chaipipat, Krissanapong Manotham and Somchai Eiam-Ong

Abstract

Objectives. Aldosterone rapidly enhances protein kinase C (PKC) alpha and beta1 proteins in the rat kidney. The G protein-coupled receptor 30 (GPR30)-mediated PKC pathway is involved in the inhibition of the potassium channel in HEK-239 cells. GPR30 mediates rapid actions of aldosterone in vitro. There are no reports available regarding the aldosterone action on other PKC isoforms and GPR30 proteins in vivo. The aim of the present study was to examine rapid actions of aldosterone on protein levels of phosphorylated PKC (p-PKC) delta, p-PKC epsilon, and GPR30 simultaneously in the rat kidney.

Methods. Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (150 µg/kg body weight). After 30 minutes, abundance and immunoreactivity of p-PKC delta, p-PKC epsilon, and GPR30 were determined by Western blot analysis and immunohisto-chemistry, respectively.

Results. Aldosterone administration significantly increased the renal protein abundance of p-PKC delta by 80% (p<0.01) and decreased p-PKC epsilon protein by 50% (p<0.05). Aldosterone injection enhanced protein immunoreactivity of p-PKC delta but suppressed p-PKC epsilon protein intensity in both kidney cortex and medulla. Protein abundance of GPR30 was elevated by aldosterone treatment (p<0.05), whereas the immunoreactivity was obviously changed in the kidney cortex and inner medulla. Aldosterone translocated p-PKC delta and GPR30 proteins to the brush border membrane of proximal convoluted tubules.

Conclusions. This is the first in vivo study simultaneously demonstrating that aldosterone administration rapidly elevates protein abundance of p-PKC delta and GPR30, while p-PKC epsilon protein is suppressed in rat kidney. The stimulation of p-PKC delta protein levels by aldosterone may be involved in the activation of GPR30.

Open access

Terezia Valkovicova, Martina Skopkova, Juraj Stanik and Daniela Gasperikova

Abstract

MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.

Open access

Dmytro O. Minchenko

Abstract

Objective. The development of obesity and its metabolic complications is associated with dysregulation of various intrinsic mechanisms, which control basic metabolic processes through changes in the expression of numerous regulatory genes.

Methods. The expression level of HLA-DRA, HLA-DRB1, HLA-G, HLA-F, and NFX1 genes as well as miR-190b was measured in the blood of obese adolescents without signs of resistance to insulin and with insulin resistance in comparison with the group of relative healthy control individuals without signs of obesity.

Results. It was shown that obesity without signs of insulin resistance is associated with upregulation of the expression level of HLA-DRA and HLA-DRB1 genes, but with down-regulation of HLA-G gene expression in the blood as compared to control group of relative healthy adolescents. At the same time, no significant changes were observed in the expression level of HLA-F and NFX1 genes in the blood of this group of obese adolescents. Development of insulin resistance in obese individuals leads to significant down-regulation of HLA-DRA, HLA-DRB1, HLA-G, and HLA-F gene expressions as well as to up-regulation of NFX1 gene as well as microRNA miR-190b in the blood as compared to obese patients without signs of insulin resistance.

Conclusions. Results of this study provide evidence that obesity affects the expression of the subset of genes related to immune response in the blood and that development of insulin resistance in obese adolescents is associated with strong down-regulation of the expressions of HLA-DRA, HLA-DRB1, HLA-F, and HLA-G genes, which may be contribute to the development of obesity complications. It is possible that transcription factor NFX1 and miR-190b participate in downregulation of HLA-DRA gene expression in the blood of obese adolescents with insulin resistance.

Open access

Shokoufeh Taherkhani, Fatemeh Moradi, Masoumeh Hosseini, Mohsen Alipour and Hadi Feizi

Abstract

Objective. Ghrelin, a 28 amino acid peptide, has diverse physiological roles. Phosphatidylino-sitol-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are involved in some of the recognized actions of ghrelin. It has been shown that ghrelin upregulates HOXB4 gene expression but the real mechanism of this effect is not clear.

Methods. Rat bone marrow stromal cells (BMSCs) were cultured in DMEM. BMSCs were treated with ghrelin (100 μM) for 48 h. Real-time PCR for HOXB4 was performed from Control (untreated BMSCs), BG (BMSCs treated with 100 µM ghrelin), PD (BMSCs treated with 10 µM PD98059, a potent inhibitor of mitogen-activated protein kinase, and 100 µM ghrelin), LY (BM-SCs treated with 10 µM LY294002, a strong inhibitor of phosphoinositide 3-kinase, and 100 µM ghrelin) and SY (BMSCs treated with 10 µM LY294002 plus 10 µM PD98059, and 100 µM ghrelin) groups. Relative gene expression changes were determined using Relative expression software tool 9 (REST 9).

Results. HOXB4 gene has been overexpressed in ghrelin-treated BMSCs (p<0.05). PI3K inhi-bition by LY294002 significantly downregulated the ghrelin-induced overexpression of HOXB4 (p<0.05).

Conclusion. We can conclude that ghrelin, through PI3K/Akt pathway, may improve BMSC transplantation potency by reducing its apoptosis. Moreover, upregulating HOXB4 in BMSC and its possible differentiation to HSCs might in the future open the doors to new treatment for hematologic disorders. Therefore, activating the PI3K/Akt pathway, instead of using a non-specific inducer, could be the principal point to increase the efficiency of BMSC-based cell therapies in the future.