Browse

You are looking at 1 - 10 of 674 items for :

  • Artificial Intelligence x
Clear All
Open access

Boris Reznikov, Alexander Ruderman and Valentina Galanina

Abstract

The paper considers a discrete state-space model for transients in a three-level flying capacitor DC–DC converter. A transition matrix is obtained for a pulse width modulation (PWM) period. The matrix elements are expanded into a power series using a selected small parameter. The matrix eigenvalues that determine the natural balancing dynamics transients are presented in the form of power series as well. Four separate transients are constructed based on four possible PWM period initial states (topologies). Inductor current and capacitor voltage transients are found for the voltage source power-up as the arithmetic average of the four separate transients. The discrete solutions are replaced by continuous ones. The resulting transients that are elementary functions of the circuit parameters, PWM period, and voltage reference demonstrate good agreement with the simulation results.

Open access

Tibor Vajsz, László Számel and Árpád Handler

Abstract

Motion control is facing an increasing popularity in the present research activities. Owing to the expected wide spreading of motion control applications, it can be predicted that the advancements in the field of electric motor drives will have a high level of influence on the new results in the field of motion control. The synchronous reluctance motor drives mean an excellent and yet cost-effective solution for actuators in motion control applications. In this article, the direct torque control with space vector modulation is analysed as a possible candidate for synchronous reluctance motor motion control applications. Its torque-control performance is investigated as a function of torque-control sample time, and a comparison of the torque ripples is made with other torque-control algorithms by an FFT analysis.

Open access

Atefeh Moghaddam, Jacques Teghem, Daniel Tuyttens, Farouk Yalaoui and Lionel Amodeo

Abstract

We consider a single-machine bi-objective scheduling problem with rejection. In this problem, it is possible to reject some jobs. Four algorithms are provided to solve this scheduling problem. The two objectives are the total weighted completion time and the total rejection cost. The aim is to determine the set of efficient solutions. Four heuristics are described; they are implicit enumeration algorithms forming a branching tree, each one having two versions according to the root of the tree corresponding either to acceptance or rejection of all the jobs. The algorithms are first illustrated by a didactic example. Then they are compared on a large set of instances of various dimension and their respective performances are analysed.

Open access

Mateusz Lango

Abstract

Sentiment classification is an important task which gained extensive attention both in academia and in industry. Many issues related to this task such as handling of negation or of sarcastic utterances were analyzed and accordingly addressed in previous works. However, the issue of class imbalance which often compromises the prediction capabilities of learning algorithms was scarcely studied. In this work, we aim to bridge the gap between imbalanced learning and sentiment analysis. An experimental study including twelve imbalanced learning preprocessing methods, four feature representations, and a dozen of datasets, is carried out in order to analyze the usefulness of imbalanced learning methods for sentiment classification. Moreover, the data difficulty factors — commonly studied in imbalanced learning — are investigated on sentiment corpora to evaluate the impact of class imbalance.

Open access

Marta Szachniuk

Abstract

In the 1970s, computer scientists began to engage in research in the field of structural biology. The first structural databases, as well as models and methods supporting the analysis of biomolecule structures, started to be created. RNA was put at the centre of scientific interest quite late. However, more and more methods dedicated to this molecule are currently being developed. This paper presents RNApolis - a new computing platform, which offers access to seven bioinformatic tools developed to support the RNA structure study. The set of tools include a structural database and systems for predicting, modelling, annotating and evaluating the RNA structure. RNApolis supports research at different structural levels and allows the discovery, establishment, and validation of relationships between the primary, secondary and tertiary structure of RNAs. The platform is freely available at http://rnapolis.pl

Open access

Paweł M. Stasik and Julian Balcerek

Abstract

Pixel art is aesthetics that emulates the graphical style of old computer systems. Graphics created with this style needs to be scaled up for presentation on modern displays. The authors proposed two new modifications of image scaling for this purpose: a proximity-based coefficient correction and a transition area restriction. Moreover a new interpolation kernel has been introduced. The presented approaches are aimed at reliable and flexible bitmap scaling while overcoming limitations of existing methods. The new techniques were introduced in an extensible. NET application that serves as both an executable program and a library. The project is designed for prototyping and testing interpolation operations and can be easily expanded with new functionality by adding it to the code or by using the provided interface.

Open access

Joseph Gogodze

Abstract

In this note, we propose a game-theoretic approach for benchmarking computational problems and their solvers. The approach takes an assessment matrix as a payoff matrix for some zero-sum matrix game in which the first player chooses a problem and the second player chooses a solver. The solution in mixed strategies of this game is used to construct a notionally objective ranking of the problems and solvers under consideration. The proposed approach is illustrated in terms of an example to demonstrate its viability and its suitability for applications.

Open access

Tibor Vajsz, László Számel and Árpád Handler

Abstract

Synchronous reluctance motor drives are one of the most attractive alternatives of permanent magnet synchronous motor drives and induction motor drives in the field of conventional industrial and household applications. This tendency is expected to be continued in the case of motion control applications as well. This article investigates two torque-control algorithms that are possible candidates for motion control synchronous reluctance motor applications. The examined torque-control algorithms are direct torque control (DTC) and hysteresis current vector control (HCVC).

Open access

Mallavolu Malleswara Rao and Geetha Ramadas

Abstract

This paper proposes a multiobjective improved particle swarm optimisation (IPSO) for placing and sizing the series modular multilevel converter-based unified power flow controller (MMC-UPFC) FACTS devices to manage the transmission congestion and voltage profile in deregulated electricity markets. The proposed multiobjective IPSO algorithm is perfect for accomplishing the close ideal distributed generation (DG) sizes while conveying smooth assembly qualities contrasted with another existing algorithm. It tends to be reasoned that voltage profile and genuine power misfortunes have generous upgrades along ideal speculation on DGs in both the test frameworks. The proposed system eliminates the congestion and the power system can be easily used to solve complex and non-linear optimisation problems in a real-time manner.

Open access

Roland Coghetto and Adam Grabowski

Summary

In the article, we continue [7] the formalization of the work devoted to Tarski’s geometry – the book “Metamathematische Methoden in der Geometrie” (SST for short) by W. Schwabhäuser, W. Szmielew, and A. Tarski [14], [9], [10]. We use the Mizar system to systematically formalize Chapter 8 of the SST book.

We define the notion of right angle and prove some of its basic properties, a theory of intersecting lines (including orthogonality). Using the notion of perpendicular foot, we prove the existence of the midpoint (Satz 8.22), which will be used in the form of the Mizar functor (as the uniqueness can be easily shown) in Chapter 10. In the last section we give some lemmas proven by means of Otter during Tarski Formalization Project by M. Beeson (the so-called Section 8A of SST).