Browse

You are looking at 1 - 10 of 192 items for :

  • Biochemistry x
Clear All
Open access

Asiata Omotayo Ibrahim, Misbaudeen Abdul-Hammed, Samuel Adewale Adegboyega, Monsurat Olajide and Akeem Abefe Aliyu

Abstract

Tomato is a significant vegetable crop with numerous health benefits derived from its carotenoids, flavonoids and other phytonutrients contents. This work studies the nutritional qualities and carotenoids contents of five different cultivars of tomatoes (San Marz, Nasmata, Roma VF, Ogbomoso local and 4-lobes). The variations of pH, titratable acidity, reducing sugar, total solid, lycopene and beta-carotene contents of these tomatoes were investigated under ambient temperature and field ripening techniques and the mean values of these parameters investigated at different ripening stages and techniques were compared. Lycopene contents were significantly higher (p ˂ 0.05) in tomatoes subjected to field ripening compared with those ripened under ambient temperature. The highest lycopene content (17.18 μg/g) was observed in Roma VF cultivar at fully-ripe stage under field ripening technique while the lowest value (0.64 μg/g) was in 4-lobes cultivar at semi-ripe stage under ambient temperature ripening. Similar trend was observed in the variation of betacarotene (a pro-Vitamin A index) among the tomato cultivars. The evaluated reducing sugar contents (ranging from 1.84 to 5.23 μg/g) were significantly higher (p < 0.05) in fully-ripe tomatoes compared to semi-ripe ones under field ripening and the trend was reversed for some cultivars under ambient temperature ripening. The titratable acidities of the tomatoes were significantly higher at the semi-ripe stage (0.24 to 0.38 %) under field ripening than those obtained under ambient temperature ripening (0.15 to 0.25 %). The pH of the tomatoes ranged from 3.58 to 4.07 and 3.46 to 5.40 under field and ambient temperature ripening, respectively, and the higher pH values obtained under ambient temperature ripening condition could make such tomatoes unsuitable in tomato processing plants. Consumption of tomatoes for the purpose of dietary antioxidant lycopene and pro-Vitamin A could maximally be achieved at fully-ripe stage under field ripening condition.

Open access

Aliyu Muhammad, Aliyu Dahiru Waziri, Gilead Ebiegberi Forcados, Babangida Sanusi, Hadiza Sani, Ibrahim Malami, Ibrahim Babangida Abubakar, Musa Fatima Abbah, Ali Tony Nelson, Bashir Musa and Hafsat Abdullahi Mohammed

Abstract

It is now glaring that sickle cell anaemia is still one of the highest leading inbred hemoglobinopathy amongst Africans. This study examined the antisickling effects of quercetin via modulation of deoxy-haemoglobin, redox homeostasis and alteration of functional chemistry in human sickle erythrocyte using in silico and in vitro models while espousing preventive and curative approaches. Quercetin was docked against deoxy-haemoglobin and 2, 3-bisphosphoglycerate mutase, with binding energies (-30.427 and -21.106 kcal/mol) and Ki of 0.988μM and 0.992μM at their catalytic sites via strong hydrophobic and hydrogen bond interactions. Induction of sickling was done using 2% metabisulphite at 3h. Treatment with quercetin prevented sickling outstandingly at 5.0μg/mL and reversed same at 7.5μg/mL, 83.6% and 75.9%, respectively. Quercetin also significantly (P<0.05) maintained the integrity of erythrocyte membrane apparently from the observed % haemolysis relative to untreated. Quercetin significantly (P<0.05) prevented and counteracted lipid peroxidation while stimulating GSH and CAT levels which were detected to considerably (P<0.05) increase with simultaneous significant (P<0.05) reduction in SOD level based on curative approach. Umpiring from our FTIR results, a favorable alteration in the part of functional chemistry in terms of shifts (bend and stretches) and functional groups were observed relative to the induced erythrocyte/untreated. Thus, antisickling effects of quercetin may be associated with modulation of deoxy-haemoglobin, redox homeostasis and alteration of functional chemistry in human sickle erythrocytes.

Open access

Oluwatoyin T. Fatunsin, Oluwasegun T. Adetunde and Kehinde O. Olayinka

Abstract

Cancer is on the increase globally. Cancer could be associated with hazards from anthropogenic activities. This study attempted to determine the site-specific potential human risks from polycyclic aromatic hydrocarbons (PAHs) in sites of different socio-economic human activities from soils across Lagos metropolis in Nigeria by including a geographic information system (GIS) approach. A Human Simulation Test method was used to determine bio-accessibility for 16 priority PAHs. This was then spatially modelled using a GIS. The spatial vulnerability index for cancer developed show some variation within the study area from 0.2 – 0.0002 all falling below the normal exposure risk level of 1.0. The vulnerability to cancer based on different anthropogenic activities assessed were within the acceptable risk levels. However, it is important to reduce human exposure to even low concentrations of bio-accessible PAHs due to their tendency to bio-accumulate in plants, humans and other organisms.

Open access

Giacomo Sardo, Charles Odilichukwu R. Okpala, Cristiano Bombardi, Sergio Vitale and Elena Fabbri

Abstract

In this current study, the retinal cell morphology of two dolphin species, Tursiops truncatus and Stenella coeruleoalba was compared, and supplemented with a miniature review of how it relates to surrounding environment. Retinal cell morphology involved sectioning and retino-separation of eyes, morphometric analysis of retinal cell layers and its corresponding neurons, followed by stratigraphy of both retina and area/density of ganglion neuron cell bodies. A qualification criteria was developed to describe both thickness and visibility. To relate with surrounding environment of studied species, we searched relevant synthesized literature combining such key words as ‘dolphin’, ‘Tursiops truncatus’, ‘Stenella coeruleoalba’, ‘eye’, ‘vision’, ‘ecology’ and ‘environment’. Retinal cell morphology comparisons showed that the thickness of outer nuclear layer had upper (37.8 – 38.5 μm) whereas outer plexiform layer had lower (7.8 – 8.7 μm) range values, with some differences between individual retinal layers (p<0.05) but specific to some cases. Area of ganglion cell layer of multipolar neurons of retina of both studied species could surpass the 800 μm2 mark, which suggests the presence of ‘giant’ size cell types. Plausibly, the retino-morphological comparisons of studied dolphin species depict the context of micro-view, and able to relate with a macro-view with respect to its surrounding environment.

Open access

Kome Otokunefor, Victor Ogechi Osogho and Chijindu Precious Nwankwo

Abstract

Multidrug resistance (MDR) continues to be a growing global issue. The problem of MDR is fuelled in part by the spread of the genes encoding resistance horizontally which is linked particularly to conjugation involving plasmids. Studies have demonstrated the presence of plasmids in drug resistant isolates, few have shown a link between these plasmids and drug resistance via plasmid curing especially in our locale. This study set out to explore this link in Escherichia coli isolates from Port Harcourt, Nigeria. Plasmid curing was done on a selection of clinical and non-clinical bacteria using acridine orange and antibiotic susceptibility testing carried out on both cured and uncured variants. Data generated was analysed to ascertain the multiple antibiotic resistance (MAR) index and MDR of each isolate. Data was then compared to ascertain effects of plasmid curing on antibiotic resistance of the isolates. Results revealed a decrease in resistance to 7 of 8 antibiotics following plasmid curing. The highest change was noted in ceftazidime (40%), followed by ofloxacin (26.7%). Plasmid curing caused a shift in MAR index values of isolates from higher to lower indices. At MAR index values of ≤0.25 occurrence increased from 5% to 36.7% while at MAR index values ≥0.75, occurrence reduced from 29.9% to 10.0%. A reduction in the degree of MDR was noted (from 55% to 36.7%). Strikingly, the reduction in MDR level of non-clinical isolates was 30% as opposed to 3.4% in the clinical isolates. This study shows a link between plasmids and antibiotic resistance. For the non-clinical isolates, the high-level link between MDR and plasmid carriage could indicate a higher use of antimicrobials in non-clinical rather than clinical settings. Additionally, it could be an indicator for a higher risk of the transfer of MDR determinants from non-clinical sources to human populations in our locale.

Open access

N. O. Orieke, O.S. Asaolu, T. A. Fashanu and O. A. Fasanmade

Abstract

Diabetes Mellitus is a metabolic disorder that affects the ability of the human body to properly utilize and regulate glucose. It is pervasive world-wide yet tenuous and costly to manage. Diabetes Mellitus is also difficult to model because it is nonlinear, dynamic and laden with mostly patient specific uncertainties. A neuro-fuzzy model for the prediction of blood glucose level in Type 1 diabetic patients using coupled insulin and meal effects is developed. This study establishes that the necessary and sufficient conditions to predict blood glucose level in a Type 1 diabetes mellitus patient are: knowledge of the patient’s insulin effects and meal effects under diverse metabolic scenarios and the transparent coupling of the insulin and meal effects. The neuro-fuzzy models were trained with data collected from a single Type 1 diabetic patient covering a period of two months. Clarke’s Error Grid Analysis (CEGA) of the model shows that 87.5% of the predictions fall into region A, while the remaining 12.5% of the predictions fall into region B within a four (4) hour prediction window. The model reveals significant variation in insulin and glucose responses as the Body Mass Index (BMI) of the patient changes.

Open access

Salima Chebbi, Atmane Allouche, Marian Schwarz, Souhila Rabhi, Hayet Belkacemi and Djoudi Merabet

Abstract

The present study investigates the application of induced air flotation (IAF) technique on PAHs (PAHs) removal performance from a real oilfield produced water of a separator cell. The quantification of total PAHs (PAHtot) was done using ultraviolet-visible spectrometry (UV-Vis) according to the naphthalene calibration curve. The UV-Vis spectra of naphthalene dissolved in a mixture of the binary solvent (water-ethanol) and the Tween 80 showed stability in the molecular orbital of C10H8. The use of small concentration of Tween 80 was revealed to be discrete in the quantification of PAHtot. The flotation process was improved at the critical micelle concentration of Tween 80 (CMC) of 2 % and the critical coalescence concentration of ethanol (CCC) of 0.5 mL/L for the PAHtot recovery of 49.76 % and the PAHtot content in the pulp of 50.24 %. At these concentrations, half of PAHtot was removed from produced water PW. Above the CMC and the CCC, the PAHtot recovery decreased and the PAHtot content in the pulp increased. It was found that there is a collector concentration at which the amount of water carrying from the pulp to the concentrate was increased and in parallel, the PAHtot recovery increased and the PAHtot content in the pulp decreased. Both of the CMC and the CCC have promoted the decrease on the conditioning time from 30 to 10 min and the flotation time from 20 to 6 min. Since the impeller speed and air flow rate were constant, the flotation of PAHs was limited. The flotation kinetics of PAHtot was described by the Higuchi model.

Open access

Dalila Ksouri, Hafit Khireddine, Ali Aksas, Tiago Valente, Fatima Bir, Nadir Slimani, Belén Cabal, Ramón Torrecillas and José Domingos Santos

Abstract

In this work ternary bioactive glasses with the molar composition 63 % SiO2, 28 % CaO, and 9 % P2O5 have been prepared via sol-gel processing route leading to xerogel or aerogel glasses, depending on the drying conditions. Two types of drying methods were used: atmospheric pressure drying (evaporative), to produce xerogels, and supercritical fluids drying, to obtain aerogels. Both dried gels were subjected to heat-treatment at three different temperatures: 400, 600 and 800 ºC in order to the removal of synthesis byproducts and structural modifications. The resulting materials were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA), and by in vitro bioactivity tests in simulated body fluid. The influence of the drying and the sintering temperature of their structure, morphology, and bioactivity of the final products were evaluated. The results show a good bioactivity of xerogel and aerogel bioactive glass powders with the formation of an apatite layer after one day of immersion in SBF solution for aerogel bioactive glass powders and a particle size less than 10 nm. An apatite layer formed after 3 days in the case of xerogel bioactive glass powders and a particle size around 100 nm.

Open access

Zita Tokárová and Anna Biathová

Abstract

Substituted thiophene-2-carbaldehydes 1a-dwere utilized in the synthesis of symmetrically substituted thiazolo[5,4-d]thiazoles 3a-d. Bis(5,4-d)thiazoles with thiophene core at the termini are the most employed in the chemistry of materials but exhibit insufficient solubility in majority of organic solvents with notable impact on the low yields of products. Accordingly, the synthetic approach towards 2,5-dithiophen- 2-yl-thiazolo[5,4-d]thiazole (3a) and its substituted derivatives 3b-d is discussed under the various reaction conditions. Appropriate structural characterisations are included with emphasis on relationship between structure and physicochemical properties highlighting the UV-Vis and fluorescence.

Open access

Ogofure G. Abraham, Bello-Osagie O. Idowu, Aduba U. Barbara, Ighodaro E. Veadams and Emoghene O. Alexander

Abstract

The qualitative assessment of putative bacterial pathogens on the surfaces of canned drinks sold in Benin metropolis was evaluated in this study. Standard bacteriological culture-based techniques employing the use of selective and differential media (Oxoid) such as Bacillus cereus agar, mannitol Salt agar, Pseudomonas cetrimide agar, bile esculin agar and MacConkey agar were used for isolation and identification of bacteria from swabbed surfaces of canned drinks. Kirby-Bauer disc diffusion technique was used for antibacterial susceptibility testing. The multiple antibiotic resistance (MAR) index was deduced from the antibiogram characterization to evaluate the public health importance of the bacterial isolates. Refrigerated samples had 25% contamination while 75% were not contaminated and about 15.39% contamination was observed for non-refrigerated samples (stored in crates or cartons) compared to the counterpart 84.61%. The bacterial species include Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Bacillus sp. and Enterococcus sp. The bacteria were found to be sensitive to ciprofloxacin (92.5%) and gentamicin (90.1%) and least susceptible to cefixime (23.1%) and vancomycin (26.4%). They were found to be multi-resistant because they have an MAR index above the tolerable permissible limit (0.2) for common antibiotics usually used for their eradication. It is important to ensure that the surfaces of canned drinks must be rinsed with water before consumption.