Browse

You are looking at 61 - 65 of 65 items for :

  • Food Science and Technology x
  • Business Management x
Clear All
Open access

A. Barabás and J. Szigeti

Abstract

In this article, the authors report on the experiences of six years of foraging, describing how the fruit wastes generated in the Pannonhalmi Pálinkárium are utilized for foraging Hungarian grey cattle. The goal is not the control or improvement of the cattle’s growth indices but the problem-free, continuous and eco-friendly disposal of the fruit waste. They have found that the fruit waste or pomace is virtually nothing else than protein-enriched sugar-free fruit, and that during the utilization of this they have to maximally adapt to the cattle’s life-cycle, biological nature and environmental factors, and they will repay you by eating the pomace. They conclude that the grey cattle are a skin-and-hairs-covered bioreactor, which provides an economical service for the distillery through the utilization of the fruit waste. Nowadays, 150,000-200,000 tons of fruit waste is produced every year, and only a few percent of this is utilized in ruminant forage. By writing this article, the authors would like to expand our very scarce knowledge on this topic.

Open access

M. Tamás and J. Csapó

Abstract

In the course of the research, we determined selenium and dry matter content of 35 wheat grass and 35 wheat seed samples. The selenium content of the preparation plant probes was measured by spectrofluorimetric determination (λexcitation = 380 nm, λemission = 519 nm) of the resulted piazselenol complex. It was established that between the selenium content of the wheat grass and wheat seed the correlation coefficient was 0.36 at p = 0.05 level, which indicates a medium-close correlation. Similarly, there was a medium-close correlation between the selenium content of the wheat grass calculated on dry-matter basis and total selenium content of the wheat, with a correlation coefficient of 0.40 at p = 0.02 level. Afterwards, beside the selenium content, we measured the selenomethionine content by ion-exchange chromatography and highperformance liquid chromatography, and the organic selenium content was calculated. A very close correlation was established between the total selenium, selenomethionine and calculated organic selenium content of wheat (the correlation coefficients were between 0.92 and 0.99 at p = 0.01 level). The correlation between the selenomethionine content of wheat grass and wheat seed was very weak (r = 0.23).

Open access

J. Tarek-Tilistyák, M. Tarek, M. Juhász-Román and J. Jekő

Abstract

Cold-pressing residue of walnut kernel (WKR) and brown linseed (BLR) was applied in wheat flour blends at 100:0, 95:5 and 90:10 ratios, of which enriched breads were baked, then stored for 3 days at ambient temperature. Colour parameters and firmness of bread crumb were measured daily. Bavarian rye-bread (BR) and wholemeal multigrain bread (WMMG) were used as competitive, marketable breads for comparing tests.

The studied oil-seed pressing residues (OSRs) resulted brown colour with different characteristics, depending both on the type of OSR and in comparison with marketed breads, too. The type and the ratio of OSR applied had no influence on the varying of crumb texture (P = 0.107). WKR and BLR enrichment provided stable texture for breads with a 3-day shelf-life, independently from their addition ratio. BLR resulted in softer crumb than WKR; however, this difference was considered to be negligible (P = 0.128). The WKR- and BLR-enriched breads stayed significantly softer at the end of storage time than the marketed breads (P = 0.000). Our results indicate that competitive bakery goods can be produced using oil-seed pressing residue/wheat flour blends.

Open access

Zs. H. Horváth and A. Véha

Abstract

Nowadays, wheat has spread all over the world due to its extensive usability. The colour of wheat grits is very important for the milling and baking industry because it determines the colour of the products made from it. The instrumental colour measuring is used, first of all, for durum wheat. We investigated the relationship between colour characteristics and grain size in the case of different hard aestivum wheats. We determined the colour using the CIE (Commission Internationale de l’Eclairage) 1976 L*, a*, b* colour system measured by MINOLTA CR-300 tristimulus colorimeter. After screening the colour of the wheat fractions of different grain size, grits was measured wet and dry. We determined the L*, a*, b* colour co-ordinates and the whiteness index, too. To evaluate the values we had obtained, we used analysis of variance and regression analysis. We pointed out that the colour of wheat grits of different grain size is dependent on the hardness index of wheat. The lightness co-ordinate (L*) of grits of the harder wheat is smaller, while a* and b* co-ordinates are higher. We also found that while grain size rises, the L* co-ordinate decreases and a*, b* values increase in the case of every type of wheat. The colour of grits is determined by the colour of fractions of 250-400 μm in size, independently from the average grain size. The whiteness index and the L* colour co-ordinate have a linear relation (R2 = 0.9151); so, the determination of whiteness index is not necessary. The L* value right characterizes the whiteness of grits.

Open access

A. Szabó, E. Gyimes and A. Véha

Abstract

Aluminium is the most frequent metal of the earth crust; it occurs mainly as biologically inactive, insoluble deposit. Environmental problems, industrial contaminations and acid rains increase the soil acidity, leading to the mobilization of Al. Half of the world’s potential arable lands are acidic; therefore, Al-toxicity decreases crop productivity. Wheat is a staple food for 35% of the world population. The effects of Al-stress (0.1 mM) were studied on winter wheat; seedlings were grown hydroponically, at acidic pH. After two weeks, the root weight was decreased; a significant difference was found in the P- and Ca-content. The shoot weight and element content changed slightly; Al-content in the root was one magnitude higher than in the shoot, while Al-translocation was limited. The root plasma membrane H+-ATPase has central role in the uptake processes; Al-stress increased the Mg2+-ATPase activity of the microsomal fraction.