Browse

31 - 40 of 455 items :

  • Energy Engineering x
Clear All
Rotating Shaft Fault Prediction Using Convolutional Neural Network: A Preliminary Study

Abstract

One of the most important subsystems of the vehicles and machines operating currently in industry and transportation are the rotating subsystems. During the operation, due to the forcing factors influence, the technical state of them is changing and the failure can occur. Fault diagnosis is maintenance task considered as an essential in such subsystems, since possibility of an early detection and diagnosis of the faulty condition can save both time and money. To do this the analysis of the subsystems vibrations is performed. The identified technical state should be considered in a context of the ability and different inability states. Therefore, the first step of the diagnostic procedure is the ability and different inability states identification.

Traditional data-driven techniques of fault diagnosis require signal processing for feature extraction, as they are unable to work with raw signal data, consequently leading to need for both expert knowledge and human work. The emergence of deep learning architectures in condition-based maintenance promises to ensure high performance fault diagnosis while lowering necessity for expert knowledge and human work. This article presents authors initial research in deep learning-based data-driven fault diagnosis of rotating subsystems. The proposed technique input raw three-axis accelerometer signal as high-definition image into deep learning layers, which automatically extract signal features, enabling high classification accuracy.

Open access
Strength Analysis of Polymer Conical Gear Wheel Made with 3D Printing Technique

Abstract

The article deals with the problem of designing conical gears with a curved line contour. The contour of the tooth flank is described by means of a helix and involutions. In the work, a conical gear designed to drive of the lower limb rehabilitation exoskeleton has analysed. Parameters of the conical gearbox have been adapted to design requirements of the exoskeleton. Gear wheels were made with ABS material using 3D printing technique. The article presents the results of strength calculations obtained using the method classical design of the gear wheals described in the norm ISO 6336-1996. In the strength calculations, bending and contact stresses were taken into account. Creating the contour of gears was aided through the gearbox wizard available in Inventor program. The work contains the results of a static tensile test of the material from which the gear wheels were made. In experimental and numerical studies, the orthotropy of the material used was taken into account. The orthogonal values of the Young’s modulus, the Poisson’s ratio and the Kirchhoff’s modulus were determined. The publication also includes partial results of fatigue tests in the area of normal stresses. In the research used to finite element method (FEM), determine of internal loads in the gear. A structure of the FEM model is described in detail. Maximum values of contact pressures determined by use to FEM models have been compared with the results obtained on the basis of Hertz’s formulas. The article presents basic geometrical and strength parameters of the designed gear. The work demonstrates the validity of the material models used. Limitations in the application of the classic method of calculating conical gears made of orthotropic materials have been indicated. The results of analytical and numerical calculations are presented in tabular and graphical form.

Open access
Turbulent Triggers and the Model Quality Influence on Aerodynamic Characteristics of the Laminar Aerofoil in Transonic Flow Regime

Abstract

The test with a roughness application on the laminar aerofoil has been conducted in the N-3 trisonic wind tunnel of the Institute of Aviation in Warsaw. The main goal of tests was to investigate the influence of the boundary layer transition triggers on a laminar profile aerodynamic characteristic. For baseline configuration, the natural transition was applied. As a local roughness on the upper model surface, the carborundum strips with different heights were applied. These were positioned on the upper model surface in the front of the shock position occurrence. The Mach number during test was equal Ma = 0.7 and Reynolds number was about 2.85·106. Tests have been conducted for different model incidence in range 0°-7°. Current article refers partially to the previous study, where aerofoil model with lower quality of surface had been tested. Investigation results from previous work indicated that some of transition positions improved an aerodynamic characteristic by reducing the drag coefficient value and decreasing shock wave unsteadiness in the transonic regime. However, current article indicates that beneficial effects in respect to the baseline configuration are also strictly dependent on the model quality and turbulent triggers size. Improved surface quality of the laminar aerofoil model affected on aerodynamic characteristics with and without turbulent triggers. Resultant aerodynamic coefficients of all tested cases i.e. drag, lift and lift to drag ratio were compared.

Open access
Wind Tunnel Tests of the Tu-154M Aircraft Aerodynamic Characteristics

Abstract

Determination of possible manoeuvres to be performed by the aircraft requires knowledge of its aerodynamic characteristics including, in particular, characteristics of the aircraft at configuration with deflected control surfaces. In this article, the wind tunnel tests results of the model of passenger Tu-154M aircraft manufactured at the scale 1:40 are presented. The model was designed and manufactured by the Military University of Technology based on the Tu-154M aircraft geometry obtained by full-scale object scanning. The model mapped all aircraft control surfaces, along with the gaps between these surfaces and the main wing part.

During the tests all the model’s control surface like, flaps, ailerons, spoilers, slots, rudder, elevator and tail plane were deflected at the same deflection angles range as they are used in the full scale aircraft. The aerodynamic characteristics of the tested Tu-154M aircraft model were measured by the 6-component internal balance. Based on the obtained measurements the aircraft model aerodynamic coefficients were calculated. In the article the basic aerodynamic characteristics of the tested Tu-154M aircraft model i.e. lift, drag coefficients as well as pitching, yawing and rolling moment coefficients versus model angles of attack and sideslip angles were presented.

The tests were performed in the Institute of Aviation low speed wind tunnels T-1 of the 1.5 m diameter test section at the undisturbed velocity, V∞ = 40 m/s.

Open access
6-Stroke Engine: Thermodynamic Modelling and Design for Testing

Abstract

In the study AVL BOOST™ is used to perform a thermodynamic simulation of a six-stroke engine, being built by a research team based in Saudi Arabia. The six-stroke cycle consists of a standard four-stroke Otto Cycle followed by a heat recovering steam expansion cycle. Water is injected into the hot combustion chamber towards the end of the Otto expansion stroke producing steam, which is used to perform work on a piston. This process produces power using waste heat and therefore increases the overall efficiency of the engine. The Robin EY28D engine, which is a single cylinder, four-stroke, gasoline engine was used for this simulation study. The engine was modelled and converted into six-stroke engine in AVL BOOST. The results show that six-stroke engine is more efficient than four-stroke engine. In six-stroke engine, the engine power is increased by 33.1% and brake specific fuel consumption (BSFC) is decreased by approximately 16%. Where emissions are concerned, Nitrogen Oxide (NOx) emission from six-stroke engine is reduced by 80%, while the Hydrocarbon (HC) emission increases by 85% compared with the original 4-stroke. Moreover, the most efficient camshaft was found and designed according to the most efficient valve profile for this engine, which is combination of 60CA° of valve duration and 10 mm of valve lifting.

Open access
Analysis of the Application of Distributed Propulsion to the AOS H2 Motor Glider

Abstract

The paper describes the selection of a distributed propulsion for the AOS H2 motor glider (selection of engines, their number, and propellers) and determination of its performance. This analysis is related to the research conducted on environment friendly and hybrid propulsions in various research centres. The main aim of the analyses conducted is to increase the performance of vehicles powered by electric motors. The batteries have a low density of energy, i.e. the ratio of mass to cumulated energy. Instead of a battery set, it is possible to apply a hybrid-electric system, where the combustion engine works as a generator or an electric-hydrogen generator, where the hydrogen cell supports a small set of batteries. One of such flying vehicles, fitting in this trend, is the AOS H2 motor glider built at the Rzeszow University of Technology in cooperation with other universities. It is a hybrid aircraft, equipped with a hydrogen cell, which together with a set of batteries is a source of electricity for the Emrax 268 electric motor. To increase the vehicle's performance (the range and flight duration), it is possible to use a distributed propulsion. This type of propulsion consists in placing many electric motors along the wingspan of the aircraft. Appropriate design of such a system (propeller diameters, engine power, number of engines) can improve the aerodynamic and performance parameters of the airframe. An analysis of the performance for the selected flight trajectory for this propulsion variant was conducted and compared to the performance of the AOS H2 motor glider equipped with traditional propulsion. The consumption of hydrogen was also determined for both systems. The results obtained were presented in the diagrams and discussed in the conclusions.

Open access
Analysis of the Impact of Changes in Flight Speed and Altitude on Emission Indexes of Pollutants in Jet Engine Exhausts

Abstract

In currently implemented international aviation strategies and programs, including those realised under the European Union policy, such as Clean Sky, SES, SESAR and, CORSIA, the environmental aspect is particularly prominent – reducing the emission of all gaseous pollutants, and from 2020 also particulate matter. Therefore, it is important to know how the change in flight parameters (altitude, speed) affects the emission of pollutants in jet engine exhausts. Such information will enable to adjust the flight altitude of the aircraft when ecological aspect is taken into consideration. In addition to the operating condition (altitude, flight speed, range of power or thrust), the amount and type of pollutants emitted depends on the type of aircraft, its aerodynamic characteristics, engine type and as well as on the type of fuel used.

The impact of changes in aircraft flight parameters (speed and altitude) on the performance of a bypass jet engine and the emission of pollutants in its exhausts is analysed in the paper. For this purpose, the speed-altitude characteristics of such an engine were determined. Next, the emission indexes (EI) for the LTO phase taken from the ICAO database were used to determine the emission indexes corresponding to given parameters of both the engine operation and the aircraft flight. For selected speeds and cruising altitudes, the value of thrust required for the flight of the aircraft was determined and to this value, the engine operation range was assigned as well the corresponding pollutant emission indexes. This allowed to calculate the mass of pollutants emitted per unit of time for given flight parameters. The results obtained are presented in the graphs and discussed.

Open access
Analysis of the Possibility of Using Low Speed Two-Stroke Dual-Fuel Engines for Propulsion of Sea-Going Vessels

Abstract

The use of gas/LNG to supply marine engines in addition to tangible economic benefits is also a method of limiting emissions of harmful substances into the atmosphere and meeting strict environmental protection regulations, especially in special areas.

The technology of supplying liquid and gas fuels (Dual Fuel) is most easily used in four-stroke engines but the highest thermal efficiency is ensured by combustion two-stroke piston engines. However, in the first two-stroke dual-fuel engines, the gas supply installation was more complicated than in the four-stroke engine. It resulted, among others from the necessity of compressing the gas to high pressures (15÷30 MPa), for which extremely energy-consuming multi-stage compression systems were needed. The complicated technical system is inherently prone to failures, which is why the dual-fuel low-speed two-stroke diesel engines remained for a long period in the design and experimental phase. In recent years, there has been a significant breakthrough thanks to the introduction of new solutions with the possibility of supplying two-stroke engines with low-pressure gas (less than 1.6 MPa). In recent years, many ships powered by two-stroke, dual-fuel internal combustion engines were commissioned. Some ship-owners owning a fleet of LNG carriers with two-stroke diesel engines that so far have been powered only by liquid fuels have decided to adapt them to gas combustion. This required the adaptation of the engine for gas combustion and the expansion of the supply gas fuel system.

This paper is an attempt to analyse the legitimacy of introducing two-stroke, dual-fuel internal combustion engines into the propulsion system and adaptation of engines that are already used to burn gas in them. It presents the changes introduced on one of the LNG gas carriers consisting in adapting the engine to gas combustion through modification of the cylinder head and fuel supply installation. Parameter results of the modified engines obtained during sea trials have been presented. Both advantages and disadvantages resulting from gas combustion have been pointed out. Finally, the possibility of this solution application to other LNG carriers was assessed.

Open access
Comparison of Image Analysis Methods on the Example of Ultrasonic Thermography of an Aramid Composite

Abstract

Infrared thermography using ultrasound thermal excitation of the tested material is one of the most effective methods in non-destructive testing of a multi-layer aramid composite. This type of material is very popular in the construction of light ballistic armours. Typical defects are delamination between layers of aramid fabric joined by resin. They are usually filled with air. Delamination located deep under the surface of the test generates very weak temperature signals. They are often at the level of noise. To reduce the impact of noise on the detection of a defect, special methods of image analysis (thermograms) are used. Such methods include principal component analysis and wavelet analysis. Principal Component Analysis is a relatively new procedure of statistical data treatment, which is becoming increasingly popular in non-destructive testing. Mathematically, it is often regarded as implementation of the so-called singular values decomposition technique, which allows extracting of spatial information from a matrix of source data. The wavelet analysis is an integral transform, which represents the convolution of an analysed process with a special mother function called wavelet. Wavelets are characterized by two parameters: scale and shift. The paper presents a comparison of the efficacy of these methods in the detection of defects in the multilayer composite reinforced aramid fibre.

Open access
Digital Recording Devices is Element of Safety of the Road Transport

Abstract

The duty of applying recorders in the road transport was implemented in states of the European Union on regulations (EWG) no. 3820 / 85 on harmonizations of some social welfare legislation referring to the transport, which was changing with regulation (EWG) no. 3821/85 on recorders applied in the road transport. The duty of implementation of the digital tachograph is also considered in the context of improving road safety. Through the analysis of the records of the registering devices can be defined in each specific case of speeding by more than the allowable value in the area. Technical requirements for your device recorded in the resolution, which defines the main parameters, are measured, among things other, the traversed path length of the car, speed, time driving, other periods of work, politeness of the driver and the correct operation of the check authorized for those authorities. At present led Regulation (EU) No 165/2014 of European Parliament establishing requirements concerning structure, checking, installation, use and repairs of tachographs and their building blocks is implementing the second generation of the digital tachographs connected with the device GNSS (Global Navigation Satellite System). Organizing the early detection from a distance is showing data officers from the digital tachograph and information concerning mass and mass falling on the wasp of the entire team of vehicles. Experience in work, economic pressures and competition in transport has led the drivers through a transport company in the event noncompliance, and in particular, in relation to the driving time and breaks. This article contains responsibilities after part rest on the drivers of vehicles takes the issues of system security and optimum performance of recording devices.

Open access