Browse

101 - 110 of 3,516 items :

  • Geosciences, other x
Clear All
Axisymmetric Torsion of an Elastic Layer Sandwiched between Two Elastic Half-Spaces with Two Interfaced Cracks

Abstract

The present article examines the problem related to the axisymmetric torsion of an elastic layer by a circular rigid disc at the symmetry plane. The layer is sandwiched between two similar elastic half-spaces with two penny-shaped cracks symmetrically located at the interfaces between the two bonded dissimilar media. The mixed boundary-value problem is transformed, by means of the Hankel integral transformation, to dual integral equations, that are reduced, to a Fredholm integral equation of the second kind. The numerical methods are used to convert the resulting system to a system of infinite algebraic equations. Some physical quantities such as the stress intensity factor and the moment are calculated and presented numerically according to some relevant parameters. The numerical results show that the discontinuities around the crack and the inclusion cause a large increase in the stresses that decay with distance from the disc-loaded. Furthermore, the dependence of the stress intensity factor on the disc size, the distance between the crack and the disc, and the shear parameter is also observerd.

Open access
Effect of Tunnel Progress on the Settlement of Existing Piled Foundation

Abstract

Tunnel construction below or adjacent to piles will affect the performance and eventually the stability of piles due to ground deformation resulting in the movement of piles and changes in the axial force distribution along the piles. A three dimensional finite element analysis using PLAXIS 3D (2013) was performed to study the behaviour of a single pile and 3 x 3 piles group during the advancement of shield tunnelling in ground. The 10-node tetrahedral elements were used to model both the soil and the tunnel lining. The Hardening Soil (HS) model was used to simulate the soil structure interaction at the tunnel-soil interface. An isotropic elastic model was used for the pile, piles cap, tunnel lining and tunnel boring machine shield (TBM). Several parametric studies were attempted including the longitudinal, lateral, and vertical tunnel location relative to pile embedded in different types of soil (clay or sand). The results showed that the pile head settlement increases during the tunnelling advancement in larger values than that for ground surface settlement. A zone of influence was determined in the range of twice the tunnel diameter in the longitudinal direction (forward and backward of the pile), and transverse direction (left and right of the tunnel centreline). If the tunnel boring is kept off this zone then there is no fear of pile collapse.

Open access
Effects of Surrounding Earth on Shell During the Construction of Flexible Bridge Structures

Abstract

A characteristic feature of soil-steel structures is that, unlike in typical bridges, the backfill and the carriageway pavement with its foundation play a major role in bearing loads. In the soil-steel structure model, one can distinguish two structural subsystems: the shell made of corrugated plates and the backfill with the pavement layers. The interactions between the subsystems are modelled as interfacial interactions, that is, forces normal and tangent to the surface of the shell. This is a static condition of the consistency of mutual interactions between the surrounding earth and the shell, considering that slip can arise at the interface between the subsystems. This paper presents an algorithm for determining the internal forces in the shell on the basis of the unit strains in the corrugated plates, and subsequently, the interfacial interactions. The effects of loads arising during the construction of a soil-steel bridge when, for example, construction machines drive over the structure, are taken into account in the analysis of the internal forces in the shell and in the surrounding earth. During construction, the forces in the shell are usually many times greater than the ones generated by service loads. Thus, the analytical results presented in this paper provide the basis for predicting the behaviour of the soil medium under operational loads.

Open access
Fast, non-destructive measurement of roof-bolt loads

Abstract

This paper discusses the pull-out laboratory tests and the monitoring of expansion-shell bolts with a length of 1.82 m. The bolts comprised the KE-3W expansion shell, a rod with a diameter of 0.0183 m and a profiled, circular plate with a diameter of 0.14 m, and a gauge of 0.006 m. The bolts were installed in a concrete block with a compressive strength of 75 MPa. The tests were conducted on a state-of-the-art test stand owned by the Department of Underground Mining of the AGH University of Science and Technology. The test stand can be used to test roof bolts on a geometric scale of 1:1 under static and rapidly varying loads. Also, the stand is suitable for testing rods measuring 5.5 m in length. The stand has a special feature of providing the ongoing monitoring of bolt load, displacement and deformation. The primary aim of the study was to compare the results recorded by two different measurement systems with the innovative Self-Excited Acoustic System (SAS) for measuring stress variations in roof bolts. In order to use the SAS, a special handle equipped with an accelerometer and exciter mounted to the nut or the upset end of the rod was designed at the Faculties of Mining and Geoengineering and Mechanical Engineering and Robotics of the AGH University of Science and Technology. The SAS can be used for nondestructive evaluation of performance of bolts around mining workings and in tunnels. Through laboratory calibration tests, roof bolt loads can be assessed using the in-situ non-destructive method.

Open access
Strength and Deformation of Sand-Tire Rubber Mixtures (STRM): An Experimental Study

Abstract

Waste material such as used tires is increasing every year, which poses environmental problems. However, such material has been used in several geotechnical applications as alternative lightweight backfill in highway embankments and/or behind retaining walls, providing environmental, economic and technical benefits. These applications require knowledge of engineering properties of soil-tire rubber mixtures. The present study aims to show the possibility of tire rubber usage in sand by evaluating the shear strength and deformability of sand mixed with granulated rubber, in weight percentages between 0 and 50%. The tire rubber content was found to influence the stress-strain and deformation behavior of the mixtures. The shear strength of sand mixed with 10% or 20% tire rubber was higher than that measured for sand only. However, the trend for TRC = 30–50% was different. Samples with a rubber content of 30-50% exhibited a rapid decrease in the stress ratio compared with that of sand. The major principal strain at maximum stress ratio was found to increase with increasing tire rubber content. However, it was observed that the lateral strains (minor and intermediate principal strains) of samples reduced significantly with the addition of tire rubber to the sand.

Open access
Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation

Abstract

At present, the suspended monorail systems constitute a very common means of transportation in the Polish hard coal mines. The main advantages of the suspended monorail include the independence of the route from the working floor surface irregularities and the possibility to transport cargo of significant mass and size.

The masses and dimensions of machines and devices transported via monorail have increased considerably in recent times. This particularly concerns the transport of longwall system elements. In Poland, the maximum speed of suspended monorail travel is 2 m/s. Due to the fact that preparations are currently underway to increase the maximum speed above 2 m/s, it is necessary to inspect what influence it will have on work safety and mining support stability.

Current operational experience and tests have shown that dynamic loads induced by the suspended monorail transportation have a significant influence on the roadway support stability, working protection durability and on the monorail operators. This is particularly true during the emergency braking of a suspended monorail by means of a braking trolley, where the overloads reach 3g.

Bench tests of the selected steel arch and rock bolt support elements utilised in the Polish hard coal mines were conducted in order to determine the resistance of steel arch and rock bolt supports to static and dynamic loads.

The article presents the results of the tests conducted on a steel arch support in the form of the sliding joints of an ŁP/V29 yielding roadway support, which is commonly employed in the Polish hard coal mines. Tests of elements of the threaded bolts with trapezoidal threads over the entire rod length were conducted as well.

The conducted strength tests of steel arch and rock bolt support elements under static and dynamic loading have shown that dynamic loading has decisive influence on the support’s retaining of its stability. Support element stability decreases along with the increase of the impact velocity. This concerns both the steel arch support and the rock bolt support.

Open access
GPR surveying method as a tool for geodetic verification of GESUT database of utilities in the light of BSI PAS128

Abstract

Intensified investment processes in construction have resulted in increased interest in the methods of efficient detection, verification and location of underground utility networks. In addition to the well-known pipe and cable locating equipment, which has increased its efficiency and reliability through the development of technologies, GPRs are becoming more and more popular.

This publication presents the results of the experimental research carried out with the use of GPRs manufactured by two different companies as well as the results of the verification of underground utilities in real conditions. The GPRs have worked in the mode of the real-time location of their own position using the GNSS system or robotic total stations.

The GPR (Ground Penetrating Radar) surveys performed on a test field, consisting of 9 pipes with a known position, were aimed at assessing the accuracy of their identification on echograms. The utility line location errors were determined using three different combinations between the GPR and the locating instrument. It allowed the evaluation of the possibility of using these solutions for detection, verification and location of underground utility networks in the light of the Polish legal regulations and the British specification PAS 128.

The verification in real conditions was carried out in a typical urban space, characterised by an intense occurrence of underground utilities, that is, sewage systems, gas pipelines and power cables. It was based on the GESUT database captured from the county geodetic and cartographic documentation centre. The results of the visual analysis of the materials captured with the help of two measurement systems were described in detail, however, the verification was carried out only for one set of data. The authors have presented the procedure of processing echograms and detecting the location of pipeline axes based on their vectorisation. The authors of this research paper have performed a numerical analysis of the compliance of the profiles of utility lines with the information from the base map for two variants of the GPR data integration with the coordinates. The authors of this research paper have also presented an alternative concept of capturing the profile of a utility line in the field based on the processing of GPR data in 3D – the so-called C-scan. The conclusions summarise the possible factors affecting the surveying results and the methods of eliminating sources of errors, both for the GPR and geodetic data.

Open access
ESR dating of fossil teeth: In which extent the thickness of adjacent tissues should be taken into account in the external beta dose rate evaluation?

Abstract

We used DosiVox to evaluate the impact of cement thickness on the dose effectively absorbed by the enamel layer. Until now, the thickness of the dental tissues adjacent to the enamel layer was not considered by any of the most widely used combined US-ESR dating programs (DATA and USESR). Instead, if adjacent tissues are present, their thickness is by default assumed to be sufficient to fulfill the infinite matrix conditions.

Our result suggest that such an assumption may represent in first instance a fair approximation of the reality, as even with a thickness of only 1 mm, the cement contributes to at least 98% of the beta dose rate coming from the outer side of the enamel layer. However, when cement is < 1 mm thick, DATA or USESR would overestimate the external beta dose rate and the value should be corrected accordingly by considering the relative contribution of the sediment. The impact of this correction on the total dose rate may vary, as it is directly dependent on the radioactivity of the cement itself, as well as of the sediment or dentine. Our results show that a very thin cement layer (0.1 mm-thick) can significantly contribute to the beta dose rate and should therefore not be neglected. Consequently, based on these results, we recommend the systematic measurement of the thickness of the dental tissues adjacent to the enamel layer during sample preparation, in order to proceed to beta dose rate corrections if necessary. Although this work has been especially focused on the case of fossil teeth showing cement, the conclusions stand for any other geometry involving different dental tissues adjacent to the enamel layer dated by ESR.

Open access
Åland churches as archives of tree-ring records sensitive to fluctuating climate

Abstract

Tree-ring chronologies provide high-resolution late Quaternary palaeoclimatic data. An important aim of tree-ring research is to extend the chronologies back in time, before the period covered by old living trees. Tree-ring material from historic buildings offers an opportunity to develop long chronologies that, in some regions, may cover the period of the past millennium. Such materials have remained in conditions favourable to preservation and can be used to date the construction timber by means of dendrochronology. Apart from dating, tree-ring data may prove valuable in interpreting past climatic conditions. Here we analyse the data of 111 Scots pine (Pinus sylvestris L.) tree-ring series from the Åland Islands in south-western Finland. In so doing, we illustrate the variation of wetness and drought in the region over a historical time frame (1057–1826). Non-climatic trends were removed from these series using alternative types of detrending procedures. Tree-ring chronologies constructed from the same raw data but using different types of detrending methods agreed on annual to subcentennial scales. The chronologies produced using regional curve standardization (RCS), preferably combined with implementation of a signal-free approach, were comparable with previously published sedimentary and tree-ring evidence from the same region. While non-RCS methods are effective in removing non-climatic information from the chronology, they also resulted in removal of the long-term variation (low-frequency), which did, at least in our data, represent the palaeoclimatic signal common to different types of proxy records. These records, including our data and those of gridded reconstructions developed previously as the Old World Drought Atlas, agreed in indicating dry conditions over the pre-1250 period and around the mid-15th century. The Åland chronology is characterized by notable fluctuations in the availability of tree-ring samples; the periods with low sample replication probably pinpoint years when large construction projects were suspended on these islands.

Open access
Classification of mountain soils in a subalpine zone – a case study from the Bieszczady Mountains (SE Poland)

Abstract

The aim of the study was to test the suitability of the 6th edition of Polish Soil Classification (SGP6) in reflecting the typical features of subalpine Bieszczady Mts. soils in comparison with the 5th edition of Polish Soil Classification (SGP5) and the newest version of World Reference Base for Soil Resources (WRB). Five soil profiles located in differentiated in terms of the parent material, topography and vegetation conditions of the natural environment were investigated. On the basis of described morphology and determined properties soils were classified according to different soil classifications. All soils under study were featured by presence of thick A horizons and high content of soil organic carbon accumulated even very deep in the profiles. Some of the mineral topsoil layers were classified as umbric/umbrik horizons. Moreover cambic/kambik horizons were present and in some cases also weak redoximorphic features occurred. The SGP6 enabled to distinguish soils with a thick, organic carbon-rich A horizons as umbrisols, a newly created subtype of grey soils. Furthermore, the soil taxonomic position according to SGP6 was more detailed in relation to the soil trophic status (in case of brown soils) and occurrence of weak redoximorphic features. That was reflected in number of subtypes to which analyzed soils were classified – 4 in SGP6 vs 2 in SGP5.

Open access