Browse

You are looking at 91 - 100 of 245 items for :

Clear All
Open access

Sateesh Suthari, Boda Ravi Kiran and Majeti Narasimha Vara Prasad

Abstract

Alternanthera philoxeroides (alligator weed) grows abundantly in polluted Peri-urban Greater Hyderabad, India. It is collected at no cost and sold in the market as a leafy vegetable in the name of “Ceylon Spinach”. The plant accumulates iron (Fe), manganese (Mn), cadmium (Cd), lead (Pb) and zinc (Zn) in roots and leaves. Soil samples were analyzed for pH, EC, available nitrogen (N), phosphorus (P) and potassium (K) and showed significant metal concentrations of Pb, Mn and Zn, which varied from one location to another. The metal accumulation order in the plants is root>leaf>stem in all the studied sites. The results revealed that the massive roots of alligator weed are effective in the bioconcentrating Fe, Mn, Zn, Pb and Cd, although the plant parts are rich in nutraceuticals like phenolics and antioxidants. Therefore, low income community prefers to consume it as vegetable. However, its consumption as a leafy vegetable can cause health risks.

Open access

Zelimir Kurtanjek

Abstract

It has been generally recognized that BigData analytics presently have most significant impact on computer inference in life sciences, such as genome wide association studies (GWAS) in basic research and personalized medicine, and its importance will further increase in near future. In this work non-parametric separation of responsive yeast genes from experimental data obtained in chemostat cultivation under dilution rate and nutrient limitations with basic biogenic elements (C,N,S,P), and the specific leucine and uracil auxothropic limitations. Elastic net models are applied for the detection of the key responsive genes for each of the specific limitations. Bootstrap and perturbation methods are used to determine the most important responsive genes and corresponding quantiles applied to the complete data set for all of the nutritional and growth rate limitations. The model predicts that response of gene YOR348C, involved in proline metabolism, as the key signature of stress. Based on literature data, the obtained result are confirmed experimentally by the biochemistry of plants under physical and chemical stress, also by functional genomics of bakers yeast, and also its important function in human tumorogenesis is observed.

Open access

Andi Abeshi, Vincenza Precone, Tommaso Beccari, Munis Dundar, Benedetto Falsini and Matteo Bertelli

Abstract

Inherited eye diseases are a group of conditions with genetic and phenotypic heterogeneity. Advances in ocular genetic research have provided insights into the genetic basis of many eye diseases. Genetic and technological progress is improving the management and care of patients with inherited eye diseases. Diagnostic laboratories continue to develop strategies with high specificity and sensitivity that reduce the costs and time required for genetic testing. The introduction of next generation sequencing technologies has significantly advanced the identification of new gene candidates and has expanded the scope of genetic testing. Gene therapy offers an important opportunity to target causative genetic mutations. There are clinical trials of treatments involving vector-based eye gene therapies, and a significant number of loci and genes now have a role in the diagnosis and treatment of human eye diseases. Applied genetic technology heralds the development of individualized treatments, ushering ophthalmology into the field of personalized medicine. Many therapeutic strategies have demonstrated efficacy in preclinical studies and have entered the clinical trial phase. In this paper we review the topic of genetic testing in inherited eye diseases. We provide some background information about genetic counseling and genetic testing in ophthalmology and discuss how genetic testing can be helpful to patients and families with inherited eye diseases.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for X-linked juvenile retinoschisis (XJR). The disease has X-linked inheritance, a prevalence that varies from one in 5000 to one in 25000 males, and is caused by mutations in the RS1 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alice Bruson, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Usher syndrome (USH). USH is mostly transmitted in an autosomal recessive manner and is caused by variations in the ADGRV1, CDH23, CIB2, CLRN1, HARS, MYO7A, PCDH15, PDZD7, USH1C, USH1G, USH2A, WHRN genes. Prevalence is estimated to be 1:30,000. Clinical diagnosis is based on audiogram, vestibular tests, visual acuity test, fundus examination, color test, optical coherence tomography and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Stargardt macular dystrophy (STGD). STGD is mostly inherited in an autosomal recessive manner and rarely in an autosomal dominant manner, with an overall prevalence of 1-5 per 10 000 live births. It is caused by variations in the ABCA4, CNGB3, ELOVL4, PRPH2 and PROM1 genes. Clinical diagnosis is based on ophthalmological examination, fluorescein angiography, electroretinography, visual field testing, optical coherence tomography and color testing. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Carla Marinelli, Tommaso Beccari, Munis Dundar, Lucia Ziccardi and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Sorsby’s fundus dystrophy (SFD). SFD is caused by variations in the TIMP3 gene. Prevalence is, currently unknown. SFD has autosomal dominant inheritance. Clinical diagnosis is based on clinical findings, color vision testing, optical coherence tomography, ophthalmological examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Leonardo Colombo and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Senior- Loken syndrome (SLSN). SLSN is inherited in an autosomal recessive manner, has a prevalence of one in a million, and is caused by variations in CEP164, CEP290, INVS, IQCB1, NPHP1, NPHP3, NPHP4, SDCCAG8, TRAF3IP1 and WDR19 genes. Clinical diagnosis is based on kidney (urine analysis, abdominal ultrasound, kidney function) and eye assessment (visual acuity test, fundus examination, refraction defects, color testing and electroretinography). The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Pamela Coppola, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for retinitis punctata albescens/fundus albipunctatus (RPA/FA). RPA and FA are reported to have autosomal dominant or autosomal recessive inheritance and are associated with variations in the PRPH2, RHO, RLBP1 and RDH5 genes. There is insufficient data to establish their prevalence. Clinical diagnosis is based on clinical findings, ophthalmological examination, optical coherence tomography, visual field testing and undetectable or severely reduced electroretinogram amplitudes. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.

Open access

Andi Abeshi, Alessandra Zulian, Tommaso Beccari, Munis Dundar, Fabiana D’Esposito and Matteo Bertelli

Abstract

We reviewed the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Refsum disease. The disease has autosomal recessive inheritance, unknown prevalence, and is caused by variations in PEX7 and PHYH genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography, optical coherence tomography and phytanic acid assay. The genetic test is useful for confirming diagnosis, for differential diagnosis, couple risk assessment and access to clinical trials.