Browse

You are looking at 91 - 100 of 266 items for :

  • Porous Materials x
Clear All
Open access

Czesław Machelski and Marcin Mumot

Abstract

Corrugated steel plates are highly rigid and as the constructions can be immersed in soil, they can be used as soil-steel structures. With an increase of cover depth, the effectiveness of operating loads decreases. A substantial reduction of the impacts of vehicles takes place as a road or rail surface with its substructure is crucial. The scope of load’s impact greatly exceeds the span L of a shell. This article presents the analysis of deformations of the upper part of a shell caused by a live load. One of the assumptions used in calculations performed in Plaxis software was the circle-shaped shell and the circumferential segment of the building structure in the 2D model. The influence lines of the components of vertical and horizontal displacements of points located at the highest place on the shell were used as a basis of analysis. These results are helpful in assessing the results of measurements carried out for the railway structure during the passage of two locomotives along the track. This type of load is characterized by a steady pressure onto wheels with a regular wheel base. The results of measurements confirmed the regularity of displacement changes during the passage of this load.

Open access

Henryk Pachla

Abstract

The formation of a pile in the existing foundation and soil creates a new foundation construction which has a structure of foundation-pile-soil. This construction must be able to transfer loads from the foundation to the pile and from the pile to the soil.

The pile structure has to transfer an imposed load. From the point of view of continuum mechanics determination of the capacity of such a system is preceded by the analysis of contact problem of three contact surfaces. Each of these surfaces is determined by different pairs of materials. The pair which creates a pile anchorage is a material from which the foundation is built (structure of stone and grout, brick and grout, concrete or reinforced concrete and grout. The pile structure is formed by grout and steel rebar. The pile formed in soil is created by a pair of grout and soil. What is important is that on contact surfaces the materials adhering to one another are subjected to different deformation types that are controlled by mechanical properties and geometry of these surfaces.

In the paper, additional conditions that should be fulfilled for the foundation-pile-soil system to make load transfer from foundation to soil possible and safe are presented. The results of research done by the author on foundation-pile contact surface are discussed. The tests were targeted at verifying the bearing capacity of anchorage and deformation of piles made of grout and other materials from which foundations are built. The specimens were tested in tension and compression. The experiments were conducted on the amount specimens which is regarded as small sample to enable the statistical analysis of the results.

Open access

Rafał F. Obrzud, Sébastien Hartmann and Krzysztof Podleś

Abstract

This paper analyzes two approaches to serviceability limit state (SLS) verification for the deep excavation boundary value problem. The verification is carried out by means of the finite element (FE) method with the aid of the commercial program ZSoil v2014. In numerical simulations, deep excavation in non-cohesive soil is supported with a diaphragm wall. In the first approach, the diaphragm wall is modeled with the Hookean material assuming reduced average stiffness and possible concrete cracking. The second approach is divided into two stages. In the first stage, the wall is modeled by defining its stiffness with the highest nominal Young’s modulus. The modulus makes it possible to find design bending moments which are used to compute the minimal design cross-section reinforcement for the retaining structure. The computed reinforcement is then used in a non-linear structural analysis which is viewed as the “actual” SLS verification.

In the second part, the paper examines the same boundary value problem assuming that the excavation takes place in quasi-impermeable cohesive soils, which are modeled with the Hardening Soil model. This example demonstrates the consequences of applying the steady-state type analysis for an intrinsically time-dependent problem. The results of this analysis are compared to the results from the consolidation-type analysis, which are considered as a reference. For both analysis types, the two-phase formulation for partially- saturated medium, after Aubry and Ozanam, is used to describe the interaction between the soil skeleton and pore water pressure.

Open access

Marek Kawa, Wojciech Puła and Michał Suska

Abstract

In the present paper, a three-dimensional problem of bearing capacity of square footing on random soil medium is analyzed. The random fields of strength parameters c and φ are generated using LAS procedure (Local Average Subdivision, Fenton and Vanmarcke 1990). The procedure used is re-implemented by the authors in Mathematica environment in order to combine it with commercial program. Since the procedure is still tested the random filed has been assumed as one-dimensional: the strength properties of soil are random in vertical direction only.

Individual realizations of bearing capacity boundary-problem with strength parameters of medium defined the above procedure are solved using FLAC3D Software. The analysis is performed for two qualitatively different cases, namely for the purely cohesive and cohesive-frictional soils. For the latter case the friction angle and cohesion have been assumed as independent random variables. For these two cases the random square footing bearing capacity results have been obtained for the range of fluctuation scales from 0.5 m to 10 m. Each time 1000 Monte Carlo realizations have been performed. The obtained results allow not only the mean and variance but also the probability density function to be estimated. An example of application of this function for reliability calculation has been presented in the final part of the paper.

Open access

Phu Minh Vuong Nguyen and Zbigniew Niedbalski

Abstract

The primary objective of the present paper is an attempt at evaluating the influence of sub-level caving operations on the slope stability of a still-functioning open pit coal mine in Vietnam. Initially, various methods of predicting the impact of underground mining on surface stability are discussed. Those theoretical considerations were later utilized in the process of constructing a Flac-2D-software-based numerical model for calculating the influence of underground operation on the deformation and possible loss of stability of an open pit slope. The numerical analysis proved that the values of open pit slope displacements were affected mainly by underground exploitation depth, direction of operation (i.e., from one slope to the other) and the distance from the slope plane. Real geomechanical strata parameters from the Vietnamese coal basin of Cam Pha were used in the modeling process. The paper is, therefore, a critical review of the hitherto proposed methods of predicting the impact of underground operation (UG) on open pit mining (OP), illustrated with selected examples of case studies on OP-UG interaction, followed by an original experiment based on numerical modeling method. This is first such study for the genuine conditions of the coal mining in Vietnam. The obtained results, however, should not be generalized due to a highly specific character of the analyzed phenomenon of mining-induced surface deformation. The practical implications of the study may occur extremely useful in the case of an UG-OP transition. Such a transition is often necessary for both technical and economical reasons, as in some coal basins open pit operations at greater depths occur unfeasible, which calls for a proper selection of parameters for a planned underground operation.

Open access

Barbara Namysłowska-Wilczyńska

Abstract

This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Kłodzko Drainage Basin, dedicated to the spatial variation in the different quality parameters of underground water in the water intake area (SW part of Poland). The research covers the period 2011-2012. Spatial analyses of the variation in various quality parameters, i.e., contents of: iron, manganese, ammonium ion, nitrate ion, phosphate ion, total organic carbon, pH redox potential and temperature, were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial variation in the parameters was analyzed on the basis of data obtained (November 2011) from tests of water taken from 14 existing wells with a depth ranging from 9.5 to 38.0 m b.g.l. The latest data (January 2012) were obtained (gained) from 3 new piezometers, made in other locations in the relevant area. A depth of these piezometers amounts to 9-10 m.

Data derived from 14 wells (2011) and 14 wells + 3 piezometers (2012) were subjected to spatial analyses using geostatistical methods. The evaluation of basic statistics of the quality parameters, including their histograms of distributions, scatter diagrams and correlation coefficient values r were presented. The directional semivariogram function γ(h) and the ordinary (block) kriging procedure were used to build the 3D geostatistical model. The geostatistical parameters of the theoretical models of directional semivariograms of the water quality parameters under study, calculated along the wells depth (taking into account the terrain elevation), were used in the ordinary (block) kriging estimation.

The obtained results of estimation, i.e., block diagrams allowed us to determine the levels of increased values of estimated averages Z* of underground water quality parameters.

Open access

Joanna Stróżyk and Matylda Tankiewicz

Abstract

The paper presents the results of a triaxial test conducted on stiff, consolidated clays. The standard TXCIU procedure (isotropic consolidation and undrained shearing) was applied in the laboratory soil tests. The undrained elastic modulus Eu50 was determined from each test.

The Eu50 values were determined for soil samples cut out from different depths and tested under different confining pressures. There was a significant scatter of values with depth, and no relationships between Eu50 modules or other geotechnical parameters (e.g., cu) were observed.

This work presents the concept of normalization of Eu50 modulus values using modified normalization SHANSEP (Stress History And Normalized Soil Engineering Properties). This method was first proposed for estimating the value of the undrained shear strength cu normalizing the parameter relative to the in situ effective vertical stress σ′vo and loading history (overconsolidation stress σ′p and overconsolidation ratio OCR) of the soil.

The study demonstrated that the concept of normalization of soil properties can also be used for testing elastic modulus Eu50 of consolidated natural clays and normalized values of geotechnical parameters taking into account the state of stress and load history can be correlated with the value of the overburden pressure.

Open access

Magdalena Głogowska and Robert Warzecha

Abstract

In this paper, a Tectonophysics map of Rybnik region is presented which is based on the method of determining the direction of the trajectory of the principal stresses in the rock mass and axis orientation of these stresses. This method is used in tectonophysics and is based on the character and parameters of faults. The whole map of Rybnik region encompasses an area of active mines: Rydułtowy-Anna, Marcel, Chwałowice, Jankowice as well as closed ones: Rymer and 1 May of Marcel mine. The paper presents only some fragments of the maps made for the four fault systems and a collective map of tectonophysic, i.e., showing chart areas of compaction for all the systems. The tectonophysics map was made to a scale of 1:20 000. Before the proper work which was the reconstruction of the compaction zone, preparatory work was done. This consisted of updates in 2013 of the tectonics of this area. As a result, tectonic maps were obtained where faults were projected on one level to get their proper azimuth and their inclination. So, a map was made which was used to separate four fault systems arising in similar conditions of stress. Next followed the reconstruction of the main stress fields, which was the cause of faults. On the map there are plotted trajectories showing minimum stress (σ 3) and areas of compaction. The maps thus constructed will be used for further studies on the stress spreading and the impact of these areas for geomechanical properties.

Open access

Michał Wymysłowski and Zygmunt Kurałowicz

Abstract

Steel sheet piles are often used to support excavations for bridge foundations. When they are left in place in the permanent works, they have the potential to increase foundation bearing capacity and reduce displacements; but their presence is not usually taken into account in foundation design. In this article, the results of finite element analysis of a typical abutment foundation, with and without cover of sheet piles, are presented to demonstrate these effects. The structure described is located over the Więceminka river in the town of Kołobrzeg, Poland. It is a single-span road bridge with reinforced concrete slab.

Open access

Maciej Sobótka and Michał Pachnicz

Abstract

The paper concerns shape optimization of a tunnel excavation cross-section. The study incorporates optimization procedure of the simulated annealing (SA). The form of a cost function derives from the energetic optimality condition, formulated in the authors’ previous papers. The utilized algorithm takes advantage of the optimization procedure already published by the authors. Unlike other approaches presented in literature, the one introduced in this paper takes into consideration a practical requirement of preserving fixed clearance gauge. Itasca Flac software is utilized in numerical examples. The optimal excavation shapes are determined for five different in situ stress ratios. This factor significantly affects the optimal topology of excavation. The resulting shapes are elongated in the direction of a principal stress greater value. Moreover, the obtained optimal shapes have smooth contours circumscribing the gauge.