Browse

You are looking at 1 - 10 of 125 items for :

  • Biomedical Electronics x
Clear All
Open access

Muhammad Abdul Kadir and K. Siddique-e Rabbani

Abstract

Tetra-polar electrical impedance measurement (TPIM) with a square geometry of electrodes is useful in the characterization of epithelial tissues, especially in the detection of cervical cancer at precancerous stages. However, in TPIM, the peak planar sensitivity just below the electrode surface is almost zero and increases to a peak value at a depth of about one third to one half of the electrode separation. To get high sensitivity for the epithelial layer, having thicknesses of 200 μm to 300 μm, the electrode separation needed is less than 1 mm, which is difficult to achieve in practical probes. This work proposes a conical conducting layer in front of a pencil like probe with a square geometry of TPIM electrodes to create virtual electrodes with much smaller separation at the body surface, thus increasing the sensitivity of the epithelial tissues. To understand the improvements, if any, 3D sensitivity distribution and transfer impedance were simulated using COMSOL Multiphysics software for a simplified body tissue model containing a 300 μm epithelial layer. It has been shown that fractional contribution of an epithelial layer can be increased several times placing a cylindrical conducting layer in between the tissue surface and the electrodes, which can further be enhanced using a conical conducting layer. The results presented in this paper can be used to choose an appropriate electrode separation, conducting layer height and cone parameters for enhanced sensitivity in the epithelial layer.

Open access

Jakob Orschulik, Diana Pokee, Tobias Menden, Steffen Leonhardt and Marian Walter

Abstract

Lung pathologies such as edema, atelectasis or pneumonia are potentially life threatening conditions. Especially in critically ill and mechanically ventilated patients, an early diagnosis and treatment is crucial to prevent an Acute Respiratory Distress Syndrome [1]. Thus, continuous monitoring tool for the lung condition available at the bedside would be highly appreciated. One concept for this is Electrical Impedance Tomography (EIT). In EIT, an electrode belt of typically 16 or 32 electrodes is attached at the body surface and multiple impedance measurements are performed. From this, the conductivity change inside the body is reconstructed in a two-dimensional image. In various studies, EIT proved to be a useful tool for quantifying recruitment maneuvers, the assessment of the ventilation homogeneity, the detection of lung edema or perfusion monitoring [2, 3, 4, 5]. Nevertheless, the main problem of EIT is the low spatial resolution (compared to CT) and the limitation to two dimensional images. In this paper, we try to address the latter issue: Instead of projecting conductivity changes onto a two-dimensional image, we adjust electrode positions to focus single tetrapolar measurements to specific, three-dimensional regions of interest. In earlier work, we defined guidelines to achieve this focusing [6, 7]. In this paper, we demonstrate in simulations and in a water tank experiment that applying these guidelines can help to detect pathologies in specific lung regions.

Open access

Robert F. Melendy

Abstract

In a succession of articles published over 65 years ago, Sir Alan Lloyd Hodgkin and Sir Andrew Fielding Huxley established what now forms our physical understanding of excitation in nerve, and how the axon conducts the action potential. They uniquely quantified the movement of ions in the nerve cell during the action potential, and demonstrated that the action potential is the result of a depolarizing event across the cell membrane. They confirmed that a complete depolarization event is followed by an abrupt increase in voltage that propagates longitudinally along the axon, accompanied by considerable increases in membrane conductance. In an elegant theoretical framework, they rigorously described fundamental properties of the Na+ and K+ conductances intrinsic to the action potential.

Notwithstanding the elegance of Hodgkin and Huxley’s incisive and explicative series of discoveries, their model is mathematically complex, relies on no small number of stochastic factors, and has no analytical solution. Solving for the membrane action potential and the ionic currents requires integrations approximated using numerical methods. In this article I present an analytical formalism of the nerve action potential, Vm and that of the accompanying cell membrane electric field, Em. To conclude, I present a novel description of Vm in terms of a single, nonlinear differential equation. This is an original stand-alone article: the major contribution is the latter, and how this description coincides with the cell membrane electric field. This work has necessitated unifying information from two preceding papers [1,2], each being concerned with the development of closed-form descriptions of the nerve action potential, Vm.

Open access

Oliver Pabst

Abstract

It has been demonstrated before that human skin can be modeled as a memristor (memory resistor). Here we realize a memristor bridge by applying two voltages of opposite signs at two different skin sites. By this setup it is possible to use human skin as a frequency doubler and half-wave rectifier which is an application of the non-linear electrical properties of human skin. The corresponding electrical measurements are non-linear since these are affected by the applied stimulus itself.

Open access

Jaan Ojarand and Mart Min

Abstract

Different excitation signals are applicable in the wideband impedance spectroscopy in general. However, in electrical bioimpedance (EBI) measurements, there are limitations that set specific demands on the properties of the excitation signals. This paper compares the efficiency of different excitation signals in a graspable presentation and gives recommendations for their use. More exactly, the paper deals with finding the efficient excitation waveforms for the fast spectroscopy of electrical bioimpedance. Nevertheless, the described solutions could be useful also in other implementations of impedance spectroscopy intended for frequency domain characterization of different objects.

Open access

Fred J. Pettersen

Abstract

The term sensitivity is sometimes misused when discussing volume impedance measurements. This is a critique of the name of the quantity sensitivity, as well as pointing out how the term easily can be misinterpreted. To resolve the issue, a shift of focus towards volume impedance density, which is a more useful quantity, is proposed. A new parameter, perceptivity, is introduced. Perceptivity is useful tool for characterization of measurement systems, to objectively compare systems, and to formulate instrument specifications.

Open access

Michael Bodo, Leslie D. Montgomery, Frederick J. Pearce and Rocco Armonda

Abstract

Neuromonitoring is performed to prevent further (secondary) brain damage by detecting low brain blood flow following a head injury, stroke or neurosurgery. This comparative neuromonitoring study is part of an ongoing investigation of brain bioimpedance (rheoencephalography-REG) as a measuring modality for use in both civilian and military medical settings, such as patient transport, emergency care and neurosurgery intensive care. In a previous animal study, we validated that REG detects cerebral blood flow autoregulation (CBF AR), the body’s physiological mechanism that protects the brain from adverse effects of low brain blood flow (hypoxia/ischemia). In the current descriptive pig study, the primary goal was to compare measurements of CBF AR made with REG to measurements made with other neuromonitoring modalities: laser Doppler flow (LDF); intracranial pressure (ICP); absolute CBF; carotid flow (CF); and systemic arterial pressure (SAP). Challenges administered to anesthetized pigs were severe induced hemorrhage (bleeding) and resuscitation; CO2 inhalation; and positive end expiratory pressure (PEEP). Data were stored on a computer and processed offline. After hemorrhage, the loss of CBF AR was detected by REG, ICP, and CF, all of which passively followed systemic arterial SAP after bleeding. Loss of CBF AR was the earliest indicator of low brain blood flow: loss of CBF AR occurred before a decrease in cardiac output, which is the cardiovascular response to hemorrhage. A secondary goal of this study was to validate the usefulness of new automated data processing software developed to detect the status of CBF AR. Both the new automated software and the traditional (observational) evaluation indicated the status of CBF AR. REG indicates the earliest breakdown of CBF AR; cessation of EEG for 2 seconds and respiration would be used as additional indicators of loss of CBF AR. The clinical significance of this animal study is that REG shows potential for use as a noninvasive, continuous and non-operator dependent neuromonitor of CBF AR in both civilian and military medical settings. Human validation studies of neuromonitoring with REG are currently in progress.

Open access

Douglas Dutra and Pedro Bertemes-Filho

Abstract

The objective of this work is to develop a technique for filtering parasitic effects from the impedance spectra (IS) measured in biological material phantoms. IS data are contaminated with unexpected capacitive and inductive effects from cable, input/output amplifiers capacitances, electrode polarization, temperature and contact pressure when collecting data. It is proposed a model which contains an RLC-network in series with the Cole model (RSC), then called RLC-Cole. It was built four circuits composed by resistors, capacitors and inductors. An impedance analyzer (HF2IS) was used to perform the measurements in the frequency range of 1 to 3000 kHz. Data were fitted into the model and comparisons to the nominal values were made. In order to validate the proposed model, a gelatin phantom and a chicken breast muscle impedance spectra were also collected and analyzed. After filtering, Cole fitting was performed. Results showed a maximum root-mean-square error of 1% for the circuits, 2.63% for the gelatin phantom, whereas 2.01% for the chicken breast. The RLC-Cole model could significantly remove parasitic effects out of a tissue impedance spectrum measured by a 4-point electrode probe. This may be highly important in EIS systems whose objective is to discriminate a normal tissue from a cancerous one.

Open access

Natália T. Bellafronte, Marina R. Batistuti, Nathália Z. dos Santos, Héric Holland, Elen A. Romão and Paula G. Chiarello

Abstract

Overweight, obese and chronic kidney disease patients have an altered and negative body composition being its assessment important. Bioelectrical impedance analysis is an easy-to-operate and low-cost method for this purpose. This study aimed to compare and correlate data from single- and multi-frequency bioelectrical impedance spectroscopy applied in subjects with different body sizes, adiposity, and hydration status. It was a cross-sectional study with 386 non-chronic kidney disease volunteers (body mass index from 17 to 40 kg/m2), 30 patients in peritoneal dialysis, and 95 in hemodialysis. Bioelectrical impedance, body composition, and body water data were assessed with single- and multi-frequency bioelectrical impedance spectroscopy. Differences (95% confidence interval) and agreements (Bland-Atman analyze) between devices were evaluated. The intraclass correlation coefficient was used to measure the strength of agreement and Pearson’s correlation to measure the association. Regression analyze was performed to test the association between device difference with body mass index and overhydration. The limits of agreement between devices were very large. Fat mass showed the greatest difference and the lowest intraclass and Pearson’s correlation coefficients. Pearson’s correlation varied from moderate to strong and the intraclass correlation coefficient from weak to substantial. The difference between devices were greater as body mass index increased and was worse in the extremes of water imbalance. In conclusion, data obtained with single- and multi-frequency bioelectrical impedance spectroscopy were highly correlated with poor agreement; the devices cannot be used interchangeably and the agreement between the devices was worse as body mass index and fat mass increased and in the extremes of overhydration.

Open access

S. Issa and H. Scharfetter

Abstract

In biomedical MITS, slight unintentional movements of the patient during measurement can contaminate the aimed images to a great extent. This study deals with measurement optimization in biomedical MITS through the detection of these unpredictable movements during measurement and the elimination of the resulting movement artefacts in the images to be reconstructed after measurement. The proposed detection and elimination (D&E) methodology requires marking the surface of the object under investigation with specific electromagnetically perturbing markers during multi-frame measurements. In addition to the active marker concept already published, a new much simpler passive marker concept is presented. Besides the biological signal caused by the object, the markers will perturb the primary magnetic field inducing their own signals. The markers' signals will be used for the detection of any unwanted object movements and the signal frames corrupted thereby. The corrupted signal frames will be then excluded from image reconstruction in order to prevent any movement artefacts from being imaged with the object. In order to assess the feasibility of the developed D&E technique, different experiments followed by image reconstruction and quantitative analysis were performed. Hereof, target movements were provoked during multifrequency, multiframe measurements in the β-dispersion frequency range on a saline phantom of physiological conductivity. The phantom was marked during measurement with either a small single-turn coil, an active marker, or a small soft-ferrite plate, a passive marker. After measurement, the erroneous phantom signals were corrected according to the suggested D&E strategy, and images of the phantom before and after correction were reconstructed. The corrected signals and images were then compared to the erroneous ones on the one hand, and to other true ones gained from reference measurements wherein no target movements were provoked on the other hand. The obtained qualitative and quantitative measurement and image reconstruction results showed that the erroneous phantom signals could be accurately corrected, and the movement artefacts could be totally eliminated, verifying the applicability of the novel D&E technique in measurement optimization in biomedical MITS and supporting the proposed aspects.