Browse

You are looking at 1 - 10 of 847 items for :

  • Fundamentals of Mechanical Engineering x
Clear All
Open access

D. Ravi Kumar, K. Jayarami Reddy and M.C. Raju

Abstract

An analytical solution of an MHD free convective thermal diffusive flow of a viscous, incompressible, electrically conducting and heat-absorbing fluid past a infinite vertical permeable porous plate in the presence of radiation and chemical reaction is presented. The flow is considered under the influence of a magnetic field applied normal to the flow. The plate is assumed to move with a constant velocity in the direction of fluid flow in slip flow regime, while free stream velocity is assumed to follow the exponentially increasing small perturbation law. The velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number distributions are derived and have shown through graphs and tables by using the simple perturbation technique.

Open access

D.S. Pathania and G. Verma

Abstract

In the present paper, we have studied the temperature and pressure dependent creep stress analysis of spherical shell. The review is critical to enhance the warm resistance of spherical shells in high-temperature conditions. The effect of different parameters was studied and it was noticed that the parameter n has a significant influence on the creep stresses and strain rates. Creep stresses and strain rates are ascertained on the premise of summed up strain measures and Seth’s transition hypothesis. This investigation is completed to demonstrate the impacts of temperature on the creep stresses and strain rates in the spherical shell. The resulting quantities are computed numerically and depicted graphically. It has been watched that the spherical shell made of an incompressible material is on more secure side of configuration when contrasted with the shell made of a compressible material.

Open access

H.M. Tlilan, A.M. Jawarneh, A. Ababneh, M. Tarawneh, M. Rababah and O.A. Smadi

Abstract

This study introduces a new definition of the strain-concentration factor (SNCF) of thick walled internally pressurized cylinders. The stress state has been considered in this new definition; i.e. triaxial and biaxial stress states for closed and open ends, respectively. Primarily, the curvature effect of the strain concentration has been studied here. To this end, the inner radius of the employed cylinders has been changed from 0.5 to 50.8 mm. On the other hand, the thickness has been kept constant at 16.7 mm. Moreover, the thickness has been fragmented to 37 elements to study the thickness effect for each case. The results show that the tangential (hoop) strain regularly spread over the whole thickness. It has been revealed that the maximum value of the tangential strain occurs on the inner surface of the cylinder. In particular, it rapidly decreases from a maximum value on the inner surface to reach its minimum value on the outer surface, which is nearly equal to the average value of hoop strain through the thickness. The results also demonstrate that tangential strain values decrease with the increase of the inner radius for any thickness. It is clear that the rate of decrease of the hoop strain changes abruptly with decreasing the inner radius of the cylinder. This led to localization of the strain concentration on the inner surface of the cylinder due to curvature, making the values of the strain concentration factor very high on the inner surface of the cylinder. In addition, the strain concentration factor decreases through the thickness of the cylinder from the inner to outer surfaces, and the rate of the decrease is increasing with a decreasing inner radius of the cylinder. The current results introduce the serious effect of the curvature on the strain concentration even if there are no irregularities in the cylinder.

Open access

A. Walicka, J. Falicki and B. Iwanowska-Chomiak

Abstract

Skin drug delivery systems are a constant source of interest because of the benefits that they offer to overcome many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous, etc.). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Skin drug delivery can be subdivided into topical and transdermal (Fig.1). In a topical administration the drug is intended to act at skin level, this is indicated for the treatment of skin diseases. The aim of transdermal administration is getting a systemic release and in this case the skin represents a barrier not a target. The availability of drugs or other active substances through the skin depends basically on two consecutive steps: the release of these drugs or substances from vehicle or carrier and their subsequent permeation through the skin. Hence, studies on the specific properties of vehicles or carriers, such as their rheological behaviours, are of great interest in the field of pharmaceutical products. The objective of the present study is to systematically characterize a nonlinear rheological behaviour and flow properties of drugs and drug carriers into topical and transdermal administration. To this aim, one- and threedimensional rheological models are presented, which may be used to describe drug release through the skin and through the extracellular and interstitial matrix structures. Finally, the rheological measurements of some commercial creams and ointments were made.

Open access

A. Merah and A. Noureddine

Abstract

Reactive pollutant dispersion in a 3-D urban street canyon is numerically investigated using a computational fluid dynamics (CFD) code (Ansys-CFX), with the k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 was considered in the presence of background O3 with an ambient wind perpendicular to the along-canyon direction. The results showed that the magnitude of NOx (NO+NO2) concentrations on the leeward side of the upstream buildings was much larger than the windward side of the downstream building, due to the entrainment and dispersion of traffic emissions by the primary vortex. The reverse is the case for ozone with higher concentrations on the windward side compared to the leeward side. The model has been validated against no-reactive pollutant experimental data of the wind tunnel experiments of Hoydysh and Dabberdt [1].

Open access

M. Yürüsoy and Ö.F. Güler

Abstract

The steady-state magnetohydrodynamics (MHD) flow of a third-grade fluid with a variable viscosity parameter between concentric cylinders (annular pipe) with heat transfer is examined. The temperature of annular pipes is assumed to be higher than the temperature of the fluid. Three types of viscosity models were used, i.e., the constant viscosity model, space dependent viscosity model and the Reynolds viscosity model which is dependent on temperature in an exponential manner. Approximate analytical solutions are presented by using the perturbation technique. The variation of velocity and temperature profile in the fluid is analytically calculated. In addition, equations of motion are solved numerically. The numerical solutions obtained are compared with analytical solutions. Thus, the validity intervals of the analytical solutions are determined.

Open access

E. Tengs, F. Charrassier, M. Holst and Pål-Tore Storli

Abstract

As part of an ongoing study into hydropower runner failure, a submerged, vibrating blade is investigated both experimentally and numerically. The numerical simulations performed are fully coupled acoustic-structural simulations in ANSYS Mechanical. In order to speed up the simulations, a model order reduction technique based on Krylov subspaces is implemented. This paper presents a comparison between the full ANSYS harmonic response and the reduced order model, and shows excellent agreement. The speedup factor obtained by using the reduced order model is shown to be between one and two orders of magnitude. The number of dimensions in the reduced subspace needed for accurate results is investigated, and confirms what is found in other studies on similar model order reduction applications. In addition, experimental results are available for validation, and show good match when not too far from the resonance peak.

Open access

N. Vijaya Bhaskar Reddy, N. Kishan and C. Srinivas Reddy

Abstract

The steady laminar incompressible viscous magneto hydrodynamic boundary layer flow of an Eyring- Powell fluid over a nonlinear stretching flat surface in a nanofluid with slip condition and heat transfer through melting effect has been investigated numerically. The resulting nonlinear governing partial differential equations with associated boundary conditions of the problem have been formulated and transformed into a non-similar form. The resultant equations are then solved numerically using the Runge-Kutta fourth order method along with the shooting technique. The physical significance of different parameters on the velocity, temperature and nanoparticle volume fraction profiles is discussed through graphical illustrations. The impact of physical parameters on the local skin friction coefficient and rate of heat transfer is shown in tabulated form.

Open access

Seung Kyu Lee, Truong An Dang and Van Tuan Le

Abstract

Shear stress is a key parameter that plays an important role in sediment transport mechanisms; therefore, understanding shear stress distribution in rivers, and especially in river bends, is necessary to predict erosion, deposition mechanisms and lateral channel migration. The aim of this study is to analyze the shear stress distribution near a river bed at 90-degree channel bend using a depth-average method based on experimental measurement data. Bed shear stress distribution is calculated using the depth-averaged method based on velocity components data has been collected from a 3D-ADV device (three-dimensional acoustic doppler velocity) at different locations of a meandering channel. Laboratory experiments have been made at the hydraulic laboratory of the RCRFIDF (Research Center for River Flow Impingement and Debris Flow), Gangneung-Wonju National University, South Korea to provide data for simulating the incipient motion of the riverbed materials and then predicting the river morphological changes in the curved rivers. The calculated results show that the maximum value of shear stress distribution near the riverbed in the different cross sections of the surveyed channel occurs in a 70-degree cross section and occurs near the outer bank. From the beginning of a 40-degree curved channel section, the maximum value of the shear stress occurs near the outer bank at the end of the channel.

Open access

B. Lertnuwat

Abstract

This work aims to find the influence of the liquid viscosity on the shape of an air Taylor bubble, rising up in a pipe column which contains the liquid under conditions that the liquid is stagnant and the Froude number is approximately equal to 0.35. Five liquid viscosities (from 0.001 to 0.01 Pa · s) were selected for being computationally investigated. An appropriate shape of a Taylor bubble, corresponding to each selected viscosity, was obtained by considering a pressure distribution of the air inside the bubble. Simulation results showed that the Taylor bubble shape would be thicker if the liquid viscosity was decreased. This could be explained by using the theory of the log-law velocity profile.