Browse

You are looking at 1 - 10 of 1,754 items for :

  • Mechanical Engineering x
Clear All
Open access

Michael Pace

Abstract

This non-experimental correlational study extends previous research investigating the relationship between project management methodology and reported project success, as well as the moderating variables of industry and project manager experience. The sample included North American project managers with five years’ experience, 25 years of age or older, and experience with multiple project management methodologies. The survey instrument consisted of 58 questions, utilizing a 5-point Likert scale to record responses. The survey contained three sections, including demographic information, questions related to a successful project, and questions related to a less-than successful (failed / challenged) project. 367 usable responses were received. The examination of the constructs included Pearson’s correlation coefficient as well as linear regression to determine the impact of moderating variables. Results indicated that project management methodology has a weak correlation with reported project success, and this correlation is not moderated by industry nor project manager experience. The results did not align with previously conducted studies, illustrating a need to continue the study of methods impacting success including investigating additional moderating variables.

Open access

D. Ravi Kumar, K. Jayarami Reddy and M.C. Raju

Abstract

An analytical solution of an MHD free convective thermal diffusive flow of a viscous, incompressible, electrically conducting and heat-absorbing fluid past a infinite vertical permeable porous plate in the presence of radiation and chemical reaction is presented. The flow is considered under the influence of a magnetic field applied normal to the flow. The plate is assumed to move with a constant velocity in the direction of fluid flow in slip flow regime, while free stream velocity is assumed to follow the exponentially increasing small perturbation law. The velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number distributions are derived and have shown through graphs and tables by using the simple perturbation technique.

Open access

D.S. Pathania and G. Verma

Abstract

In the present paper, we have studied the temperature and pressure dependent creep stress analysis of spherical shell. The review is critical to enhance the warm resistance of spherical shells in high-temperature conditions. The effect of different parameters was studied and it was noticed that the parameter n has a significant influence on the creep stresses and strain rates. Creep stresses and strain rates are ascertained on the premise of summed up strain measures and Seth’s transition hypothesis. This investigation is completed to demonstrate the impacts of temperature on the creep stresses and strain rates in the spherical shell. The resulting quantities are computed numerically and depicted graphically. It has been watched that the spherical shell made of an incompressible material is on more secure side of configuration when contrasted with the shell made of a compressible material.

Open access

H.M. Tlilan, A.M. Jawarneh, A. Ababneh, M. Tarawneh, M. Rababah and O.A. Smadi

Abstract

This study introduces a new definition of the strain-concentration factor (SNCF) of thick walled internally pressurized cylinders. The stress state has been considered in this new definition; i.e. triaxial and biaxial stress states for closed and open ends, respectively. Primarily, the curvature effect of the strain concentration has been studied here. To this end, the inner radius of the employed cylinders has been changed from 0.5 to 50.8 mm. On the other hand, the thickness has been kept constant at 16.7 mm. Moreover, the thickness has been fragmented to 37 elements to study the thickness effect for each case. The results show that the tangential (hoop) strain regularly spread over the whole thickness. It has been revealed that the maximum value of the tangential strain occurs on the inner surface of the cylinder. In particular, it rapidly decreases from a maximum value on the inner surface to reach its minimum value on the outer surface, which is nearly equal to the average value of hoop strain through the thickness. The results also demonstrate that tangential strain values decrease with the increase of the inner radius for any thickness. It is clear that the rate of decrease of the hoop strain changes abruptly with decreasing the inner radius of the cylinder. This led to localization of the strain concentration on the inner surface of the cylinder due to curvature, making the values of the strain concentration factor very high on the inner surface of the cylinder. In addition, the strain concentration factor decreases through the thickness of the cylinder from the inner to outer surfaces, and the rate of the decrease is increasing with a decreasing inner radius of the cylinder. The current results introduce the serious effect of the curvature on the strain concentration even if there are no irregularities in the cylinder.

Open access

A. Walicka, J. Falicki and B. Iwanowska-Chomiak

Abstract

Skin drug delivery systems are a constant source of interest because of the benefits that they offer to overcome many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous, etc.). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Skin drug delivery can be subdivided into topical and transdermal (Fig.1). In a topical administration the drug is intended to act at skin level, this is indicated for the treatment of skin diseases. The aim of transdermal administration is getting a systemic release and in this case the skin represents a barrier not a target. The availability of drugs or other active substances through the skin depends basically on two consecutive steps: the release of these drugs or substances from vehicle or carrier and their subsequent permeation through the skin. Hence, studies on the specific properties of vehicles or carriers, such as their rheological behaviours, are of great interest in the field of pharmaceutical products. The objective of the present study is to systematically characterize a nonlinear rheological behaviour and flow properties of drugs and drug carriers into topical and transdermal administration. To this aim, one- and threedimensional rheological models are presented, which may be used to describe drug release through the skin and through the extracellular and interstitial matrix structures. Finally, the rheological measurements of some commercial creams and ointments were made.

Open access

A. Merah and A. Noureddine

Abstract

Reactive pollutant dispersion in a 3-D urban street canyon is numerically investigated using a computational fluid dynamics (CFD) code (Ansys-CFX), with the k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 was considered in the presence of background O3 with an ambient wind perpendicular to the along-canyon direction. The results showed that the magnitude of NOx (NO+NO2) concentrations on the leeward side of the upstream buildings was much larger than the windward side of the downstream building, due to the entrainment and dispersion of traffic emissions by the primary vortex. The reverse is the case for ozone with higher concentrations on the windward side compared to the leeward side. The model has been validated against no-reactive pollutant experimental data of the wind tunnel experiments of Hoydysh and Dabberdt [1].

Open access

M. Yürüsoy and Ö.F. Güler

Abstract

The steady-state magnetohydrodynamics (MHD) flow of a third-grade fluid with a variable viscosity parameter between concentric cylinders (annular pipe) with heat transfer is examined. The temperature of annular pipes is assumed to be higher than the temperature of the fluid. Three types of viscosity models were used, i.e., the constant viscosity model, space dependent viscosity model and the Reynolds viscosity model which is dependent on temperature in an exponential manner. Approximate analytical solutions are presented by using the perturbation technique. The variation of velocity and temperature profile in the fluid is analytically calculated. In addition, equations of motion are solved numerically. The numerical solutions obtained are compared with analytical solutions. Thus, the validity intervals of the analytical solutions are determined.