Browse

1 - 10 of 752 items :

  • Control Engineering, Metrology and Testing x
Clear All

Abstract

In biometrics, methods which are able to precisely adapt to the biometric features of users are much sought after. They use various methods of artificial intelligence, in particular methods from the group of soft computing. In this paper, we focus on on-line signature verification. Such signatures are complex objects described not only by the shape but also by the dynamics of the signing process. In standard devices used for signature acquisition (with an LCD touch screen) this dynamics may include pen velocity, but sometimes other types of signals are also available, e.g. pen pressure on the screen surface (e.g. in graphic tablets), the angle between the pen and the screen surface, etc. The precision of the on-line signature dynamics processing has been a motivational springboard for developing methods that use signature partitioning. Partitioning uses a well-known principle of decomposing the problem into smaller ones. In this paper, we propose a new partitioning algorithm that uses capabilities of the algorithms based on populations and fuzzy systems. Evolutionary-fuzzy partitioning eliminates the need to average dynamic waveforms in created partitions because it replaces them. Evolutionary separation of partitions results in a better matching of partitions with reference signatures, eliminates dispro-portions between the number of points describing dynamics in partitions, eliminates the impact of random values, separates partitions related to the signing stage and its dynamics (e.g. high and low velocity of signing, where high and low are imprecise-fuzzy concepts). The operation of the presented algorithm has been tested using the well-known BioSecure DS2 database of real dynamic signatures.

Abstract

Content-based image retrieval methods develop rapidly with a growing scale of image repositories. They are usually based on comparing and indexing some image features. We developed a new algorithm for finding objects in images by traversing their edges. Moreover, we describe the objects by histograms of local features and angles. We use such a description to retrieve similar images fast. We performed extensive experiments on three established image datasets proving the effectiveness of the proposed method.

Abstract

In this paper, we propose a new population-based evolutionary algorithm that automatically configures the used search mechanism during its operation, which consists in choosing for each individual of the population a single evolutionary operator from the pool. The pool of operators comes from various evolutionary algorithms. With this idea, a flexible balance between exploration and exploitation of the problem domain can be achieved. The approach proposed in this paper might offer an inspirational alternative in creating evolutionary algorithms and their modifications. Moreover, different strategies for mutating those parts of individuals that encode the used search operators are also taken into account. The effectiveness of the proposed algorithm has been tested using typical benchmarks used to test evolutionary algorithms.

Abstract

We consider the problem of multi agents cooperating in a partially-observable environment. Agents must learn to coordinate and share relevant information to solve the tasks successfully. This article describes Asynchronous Advantage Actor-Critic with Communication (A3C2), an end-to-end differentiable approach where agents learn policies and communication protocols simultaneously. A3C2 uses a centralized learning, distributed execution paradigm, supports independent agents, dynamic team sizes, partially-observable environments, and noisy communications. We compare and show that A3C2 outperforms other state-of-the-art proposals in multiple environments.

Abstract

Clustering is an attractive technique used in many fields in order to deal with large scale data. Many clustering algorithms have been proposed so far. The most popular algorithms include density-based approaches. These kinds of algorithms can identify clusters of arbitrary shapes in datasets. The most common of them is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The original DBSCAN algorithm has been widely applied in various applications and has many different modifications. However, there is a fundamental issue of the right choice of its two input parameters, i.e the eps radius and the MinPts density threshold. The choice of these parameters is especially difficult when the density variation within clusters is significant. In this paper, a new method that determines the right values of the parameters for different kinds of clusters is proposed. This method uses detection of sharp distance increases generated by a function which computes a distance between each element of a dataset and its k-th nearest neighbor. Experimental results have been obtained for several different datasets and they confirm a very good performance of the newly proposed method.

Abstract

In this paper, we look closely at the issue of contaminated data sets, where apart from legitimate (proper) patterns we encounter erroneous patterns. In a typical scenario, the classification of a contaminated data set is always negatively influenced by garbage patterns (referred to as foreign patterns). Ideally, we would like to remove them from the data set entirely. The paper is devoted to comparison and analysis of three different models capable to perform classification of proper patterns with rejection of foreign patterns. It should be stressed that the studied models are constructed using proper patterns only, and no knowledge about the characteristics of foreign patterns is needed. The methods are illustrated with a case study of handwritten digits recognition, but the proposed approach itself is formulated in a general manner. Therefore, it can be applied to different problems. We have distinguished three structures: global, local, and embedded, all capable to eliminate foreign patterns while performing classification of proper patterns at the same time. A comparison of the proposed models shows that the embedded structure provides the best results but at the cost of a relatively high model complexity. The local architecture provides satisfying results and at the same time is relatively simple.

Abstract

Large-scale image repositories are challenging to perform queries based on the content of the images. The paper proposes a novel, nested-dictionary data structure for indexing image local features. The method transforms image local feature vectors into two-level hashes and builds an index of the content of the images in the database. The algorithm can be used in database management systems. We implemented it with an example image descriptor and deployed in a relational database. We performed the experiments on two image large benchmark datasets.

Abstract

Nowadays, unprecedented amounts of heterogeneous data collections are stored, processed and transmitted via the Internet. In data analysis one of the most important problems is to verify whether data observed or/and collected in time are genuine and stationary, i.e. the information sources did not change their characteristics. There is a variety of data types: texts, images, audio or video files or streams, metadata descriptions, thereby ordinary numbers. All of them changes in many ways. If the change happens the next question is what is the essence of this change and when and where the change has occurred. The main focus of this paper is detection of change and classification of its type. Many algorithms have been proposed to detect abnormalities and deviations in the data. In this paper we propose a new approach for abrupt changes detection based on the Parzen kernel estimation of the partial derivatives of the multivariate regression functions in presence of probabilistic noise. The proposed change detection algorithm is applied to oneand two-dimensional patterns to detect the abrupt changes.

Abstract

The social learning mechanism used in the Particle Swarm Optimization algorithm allows this method to converge quickly. However, it can lead to catching the swarm in the local optimum. The solution to this issue may be the use of genetic operators whose random nature allows them to leave this point. The degree of use of these operators can be controlled using a neuro-fuzzy system. Previous studies have shown that the form of fuzzy rules should be adapted to the fitness landscape of the problem. This may suggest that in the case of complex optimization problems, the use of different systems at different stages of the algorithm will allow to achieve better results. In this paper, we introduce an auto adaptation mechanism that allows to change the form of fuzzy rules when solving the optimization problem. The proposed mechanism has been tested on benchmark functions widely adapted in the literature. The results verify the effectiveness and efficiency of this solution.

Abstract

The paper presented here describes a new practical approach to the reconstruction problem applied to 3D spiral x-ray tomography. The concept we propose is based on a continuous-to-continuous data model, and the reconstruction problem is formulated as a shift invariant system. This original reconstruction method is formulated taking into consideration the statistical properties of signals obtained by the 3D geometry of a CT scanner. It belongs to the class of nutating reconstruction methods and is based on the advanced single slice rebinning (ASSR) methodology. The concept shown here significantly improves the quality of the images obtained after reconstruction and decreases the complexity of the reconstruction problem in comparison with other approaches. Computer simulations have been performed, which prove that the reconstruction algorithm described here does indeed significantly outperforms conventional analytical methods in the quality of the images obtained.