Browse

You are looking at 1 - 10 of 322 items for :

  • Nuclear Chemistry x
Clear All
Open access

Przemysław Stanisz, Jerzy Cetnar and Mikołaj Oettingen

Abstract

The highest efficiency in the usage of nuclear energy resources can be implemented in fast breeder reactors of generation IV. It is achieved thanks to the ability of consuming minor actinides (MAs) in energy production. One of the options to use this benefit is full recycling of MAs to close the nuclear fuel cycle. Monte Carlo burn up (MCB), an integrated burn-up calculation code, deals with the complexity of the burn-up process which is applied to the European Lead-cooled Fast Reactor (ELFR). MCB uses continuous energy representation of cross section and spatial effects of full core reactor model; however, it automatically calculates nuclide production in all possible reactions or decay channels. Multi-recycling of MAs can cause an intensified build-up of curium, berkelium and californium. Some of their isotopes are strong neutron emitters from spontaneous fission, which hinders fuel recycling. The implementation of a novel methodology for trajectory period folding allows us to trace the life cycle of crucial MAs from the beginning of the reactor life towards the state of adiabatic equilibrium. The result of the analysis performed is presented, showing the sources of strong contribution to the neutron production rate. The parametric sensitivity analysis method for selected nuclide reactions is applied, revealing sensitivity of transmutation chains for the production of neutron emitter isotopes.

Open access

Grażyna Przybytniak, Jarosław Sadło, Małgorzata Dąbrowska and Zbigniew Zimek

Abstract

Calf skin collagen and three amino acids essential for its structure, namely glycine, L-proline and 4-hydroxyl-L-proline, were irradiated with gamma rays up to a dose of 10 kGy. Conversion of radicals over time or after thermal annealing to selected temperatures was monitored by X-band electron paramagnetic resonance (EPR) spectroscopy. Some experimental spectra were compared with signals simulated based on literature data from the electron nuclear double resonance (ENDOR) studies. The following phenomena were confirmed in the tested amino acids: abstraction of hydrogen atom (glycine, proline, hydroxyproline, collagen), deamination (glycine, hydroxyproline), decarboxylation (hydroxyproline). Chain scission at glycine residues, radiation-induced decomposition of side groups and oxidative degradation were observed in irradiated collagen. The decay of radicals in collagen saturated with water occurred at lower temperatures than in macromolecules having only structural water. The paramagnetic centres were the most stable in an oxygen-free atmosphere (vacuum). Radical processes deteriorated the structure of collagen; hence, radiation sterilization of skin grafts requires careful pros and cons analysis.

Open access

Hyam Nazmy Khalaf, Mostafa Y. A. Mostafa and Michael Zhukovsky

Abstract

Particle size distribution is an important factor governing whether aerosols can be deposited in various respiratory tract regions in humans. Recently, electronic cigarette (EC), as the alternative of tobacco cigarette, has become increasingly popular all over the world. However, emissions from ECs may contribute to both indoor and outdoor air pollution; moreover, comments about their safety remain controversial, and the number of users is increasing rapidly. In this investigation, aerosols were generated from ECs and studied in the indoor air and in a chamber under controlled conditions of radon concentration. The generated aerosols were characterized in terms of particle number concentrations, size, and activity distributions by using aerosol diffusion spectrometer (ADS), diffusion battery, and cascade impactor. The range of ADS assessment was from 10−3 μm to 10 μm. The number concentration of the injected aerosol particles was between 40 000 and 100 000 particles/cm3. The distribution of these particles was the most within the ultrafine particle size range (0–0.2 μm), and the other particle were in the size range from 0.3 μm to 1 μm. The surface area distribution and the mass size distribution are presented and compared with bimodal distribution. In the radon chamber, all distributions were clearly bimodal, as the free radon decay product was approximately 1 nm in diameter, with a fraction of ~0.7 for a clean chamber (without any additional source of aerosols). The attached fraction with the aerosol particles from the ECs had a size not exceeding 1.0 μm.

Open access

Omid Khayat and Hossein Afarideh

Abstract

Multiphase flow meters are used to measure the water-liquid ratio (WLR) and void fraction in a multiphase fluid stream pipeline. In the present study, a system of multiphase flow measurement has been designed by application of three thallium-doped sodium iodide scintillators and a radioactive source of 133Ba simulated by Monte Carlo N-particle (MCNP) transport code. In order to capture radiations passing across the pipe, two direct detectors have been installed on opposite sides of the radioactive source. Another detector has been placed perpendicular to the transmission beam emitted from the 133Ba source to receive radiations scattered from the fluid flow. Simulation was done by the MCNP code for different volumetric fractions of water, oil, and gas phases for two types of flow regimes, namely, homogeneous and annular; training and validation data have been provided for the artificial neural network (ANN) to develop a computation model for pattern recognition. Depending on applications of the neural system, several structures of ANNs are used in the current paper to model the flow measurement relations, while the detector outputs are considered as the input parameters of the neural networks. The first, second, and third structures benefit from two, three, and five multilayer perceptron neural networks, respectively. Increasing the number of ANNs makes the system more complicated and decreases the available data; however, it increases the accuracy of estimation of WLR and gas void fraction. According to the results, the maximum relative difference was observed in the scattering detector. It was clear that transmission detectors would demonstrate the difference between the flow regimes as well. It is necessary to note that the error calculated by the MCNP simulator is <0.5% for the direct detectors (TR1 and TR2). Due to the difference between the data of the two flow regimes and the errors of data in the simulation codes of the MCNP, it was possible to separate these flow regimes. The effect of changing WLR on the efficiency for a constant void fraction confirms a considerable variance in the results of annular and homogeneous flows occurring in the scattering detector. There is a similar trend for the void fraction; hence, one can easily distinguish changes in efficiency due to the WLR. Analysis of the simulation results revealed that in the proposed structure of the multiphase flow meter and the computation model used for simulation, the two flow regimes are simply distinguishable.

Open access

Marcin Rogowski, Tomasz Smoliński, Marta Pyszynska, Marcin Brykała and Andrzej G. Chmielewski

Abstract

The use of radiotracers in the present study is intended to replace traditional steps of metal quantitative analysis (solution sampling and instrumental chemical analysis) and to allow real-time measurements of metal concentrations during the leaching process. In this study, 64Cu, an isotope of copper, was selected as a radiotracer. Samples of copper flotation tailings were irradiated in the Maria research reactor (Świerk, Poland) and mixed with an inactive portion of the milled fl otation waste. The leaching process was carried out in a glass reactor, and the radiation spectrum was measured using a gamma spectrometer. The material was then treated using various acids (sulphuric acid, nitric acid, acetic acid, citric acid, and ascorbic acid) in a wide range of their concentrations. Experiments with the radiotracer were conducted in sulphuric and nitric acids. The amount of the leached metal (copper) was calculated on the basis of the peak area ratio in the gamma-ray spectrum of the activated tailings and standard samples. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to analyse the metal content. Maximum recovery of 56% Cu was achieved using 9 M HNO3, whereas the recovery was lowest for ascorbic acid (<1%). Both analytical methods were compared, and the results presented in this paper are in good agreement with radiometric measurements obtained using ICP-MS analysis.

Open access

Tomasz Smoliński, Marcin Rogowski, Marcin Brykała, Marta Pyszynska and Andrzej G. Chmielewski

Abstract

Scientifi c objective of this work was elaboration of radiometric method for the development of hydrometallurgical process for recovery of Cu from the copper ore. A neutron activation analysis (NAA) was identifi ed as a very convenient tool for the process investigation. The samples of copper ore were activated in a nuclear reactor. The parameters of the neutron activation were calculated. Radioisotope 64Cu was selected as an optimal tracer, and it was used for the investigation of the leaching process. During the experiments, various processes applying leaching media such as sulphuric acid, nitric acid, and organic acids were investigated. The recovery of the metals using sulphuric acid was insuffi cient, around 10%. Investigated organic media also did not meet expectations. The best results were obtained in experiments with nitric acid. Up to 90% of Cu and other metals were extracted from the copper ore. Copper concentration calculations obtained by NAA were confi rmed by inductively coupled plasma mass spectrometry (ICP-MS) technique. Both techniques gave comparable results, but the advantage of the NAA is a possibility for easy online measurements without shutting down or disturbing the system.

Open access

Nan Gan, Kuang Cen, Rong Ye and Ting Li

Abstract

The surveys of terrestrial gamma dose rate, radon concentration indoor and in water and specific activity of radionuclides of soil were carried out in 14 villages and a town in Xiangshan uranium deposit and surrounding area, Jiangxi province, Eastern China, in 2017-2018, using a scintillator dosemeter, an ionization chamber and a high-purity germanium gamma spectrometer to study radiation status in these places after remediation. A radioactive hot spot was discovered in a village near the mining office, where specific activity of 238U, 226Ra, 232Th and 137Cs of soil was as high as 1433 ± 76 Bq/kg, 1210 ± 62 Bq/kg, 236 ± 13 Bq/kg and 17 ± 1.1 Bq/kg, respectively. The dose rate on a waste rock heap was about 2423 nGy/h. Approximately 50% of the houses in a village near the uranium mining site had radon concentrations that exceeded 160 Bq/m3. There was a significant positive correlation between indoor radon concentration and outdoor gamma dose rate (R2 = 0.7876). The abnormal radon concentration was observed in a rising spring sample providing residents with tap water up to 127.1 Bq/l. Four tap water samples and three of five well water samples exceeded the limit of radon concentration of drinking water in China (11.1 Bq/l). The mean annual effective doses from gamma dose rate data were 0.86 mSv/y and 1.13 mSv/y for indoor radon. The study shows that there are some radioactively contaminated places surrounding the Xiangshan uranium mine. The local outdoor dose rate averages may be used to estimate local indoor radon concentrations.

Open access

Marcin Stobiński, Filip Jędrzejek and Barbara Kubica

Abstract

The aim of the research is to obtain preliminary information about the spatial distribution of gamma radionuclides in the soils taken from the Ojców National Park with emphasis on the behaviour of artificial radionuclides, with 137Cs as a representative. The natural radionuclides 40K, 226Ra (uranium series), and 228Th (thorium series), which are considered as background radiation, were also determined. In total, 18 soil samples were collected during the summer periods in 2015-2017, while the sampling points were selected with respect to differences in rainfall and local topography gradient. The method was based on gamma-ray spectrometry performed on high-purity germanium (HPGe) gamma detector (relative efficiency 34%). 137Cs was mostly deposited in the top soil layers, with activity in the range of 27.9÷586.6 Bq·kg-1. We found strong positive correlation of the 137Cs activity with the soil organic matter content, and at the same time, its dependence on the rainfall amount. Consequently, the soil types and local climate can control the spatial distribution of 137Cs on a small spatial scale. The quantity of natural radionuclides was highly similar in all samples with the following mean values: 38.0 Bq·kg-1for 228Th, 33.1 Bq·kg-1for 226Ra, and 479.9 Bq·kg-1for 40K.

Open access

Marta Adamczyk, Sebastian Adamczyk and Tomasz Piotrowski

Abstract

Background and objectives: To justify the concept of validating conformal versus intensity-modulated approach in the treatment of non-small cell lung cancer (NSCLC). Materials and methods: For 10 patients representative of the spectrum of tumour sizes and locations, two plans were prepared: one with three-dimensional conformal radiation therapy (3DCRT) technique and the other with intensity-modulated radiation therapy (IMRT) technique. Preliminary measurements were performed in static conditions. For each of the field angles considered, the motion kernel was generated to simulate tumour motion trajectories, with the largest amplitude in the cranio-caudal direction of 4, 6, and 8 mm. The measurement results determined the agreement between the planned and measured doses. Results: No statistically significant differences were found between the motion patterns, with the smallest amplitudes for clinical target volume in 3DCRT. For IMRT, the significant differences between 0 mm vs. 6 mm and 0 mm vs. 8 mm amplitudes were found. The motion impact on delivered vs. planned doses had less effect on the oesophagus in 3DCRT compared to that in IMRT. The observed differences were comparable for the heart. Interpretation and conclusions: For maximal amplitudes below 4 mm, the disagreement between planned and delivered doses can be neglected. However, the amplitudes above 5 mm and 7 mm lead to significant changes in IMRT and 3DCRT dose distribution, respectively.

Open access

Wojciech Starosta, Viera K. Semina, Jerzy Smolik, Lech Waliś, Michał Rydzewski and Bożena Sartowska

Abstract

Zirconium alloys used widely in nuclear industry as fuel claddings are prone to violent oxidation in water steam atmosphere in the case of loss of coolant accident (LOCA). Accompanying generation of large quantities of heat and explosive gaseous hydrogen may lead to destruction of nuclear core. As the safety of nuclear installations is of primary importance, intensive research works are conducted on the development of so-called accident tolerant fuels much less prone to oxidation. In this paper, the application of external zirconium-silicide coatings deposited by magnetron sputtering is proposed. The preliminary results of their synthesis and studies of air oxidation properties at elevated temperatures are presented.