LOG-LIKE FUNCTIONS AND UNIFORM DISTRIBUTION MODULO ONE

Martin Rehberg
Technische Hochschule Mittelhessen, Friedberg, GERMANY

Abstract

For a function f satisfying $f(x)=o\left((\log x)^{K}\right), K>0$, and a sequence of numbers $\left(q_{n}\right)_{n}$, we prove by assuming several conditions on f that the sequence $\left(\alpha f\left(q_{n}\right)\right)_{n \geq n_{0}}$ is uniformly distributed modulo one for any nonzero real number α. This generalises some former results due to Too, Goto and Kano where instead of $\left(q_{n}\right)_{n}$ the sequence of primes was considered.

Communicated by Werner Georg Nowak

1. Introduction and results

Let p_{n} be the nth prime number in ascending order and α a nonzero real number. Then Goto and K ano [1], [2], as well as Too [7], proved by assuming several conditions on the function f that the sequence $\left(\alpha f\left(p_{n}\right)\right)_{n}$ is uniformly distributed modulo one. Recall that a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers is said to be uniformly distributed modulo one if for every pair α, β of real numbers with $0 \leq \alpha<\beta \leq 1$ the proportion of the fractional parts of the x_{n} in the interval $[\alpha, \beta)$ tends to its length in the following sense:

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{1 \leq n \leq N:\left\{x_{n}\right\} \in[\alpha, \beta)\right\}}{N}=\beta-\alpha .
$$

In fact Goto, Kano and Too proved their results by determining a bound for the discrepancy of the considered sequence.

Definition 1. Let x_{1}, \ldots, x_{N} be a finite sequence of real numbers. The number

$$
D_{N}:=D_{N}\left(x_{1}, \ldots, x_{N}\right):=\sup _{0 \leq \alpha<\beta \leq 1}\left|\frac{\#\left\{1 \leq n \leq N:\left\{x_{n}\right\} \in[\alpha, \beta)\right\}}{N}-(\beta-\alpha)\right|
$$

[^0]
MARTIN REHBERG

is called the discrepancy of the given sequence. If $\omega=\left(x_{n}\right)$ is an infinite sequence (or a finite sequence containing at least N terms), $D_{N}(\omega)$ is meant to be the discrepancy of the first N terms of ω.

It is well known that a sequence $\omega=\left(x_{n}\right)_{n \in \mathbb{N}}$ is uniformly distributed modulo one if and only if $\lim _{N \rightarrow \infty} D_{N}(\omega)=0$. Instead of the sequence of primes, which was investigated in [1], [2] and [7, we consider a sequence of real numbers $\left(q_{n}\right)_{n \geq 1}$ satisfying $1<q_{1}<q_{2}<\cdots$ with $q_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Further, we assume that the sequence $\left(q_{n}\right)_{n \geq 1}$ satisfies

$$
\begin{equation*}
Q(x)-c \int_{2}^{x} \frac{d t}{\log t} \ll \frac{x}{(\log x)^{k}} \tag{1}
\end{equation*}
$$

for every positive $k>1$, where $Q(x):=\sum_{q_{n} \leq x} 1$ and $c>0$ is some constant. Note that condition (1) holds for the sequence of primes (with $c=1$), as well as for primes in arithmetic progressions (with $c=\varphi(q)^{-1}$, where φ is Euler's function and q is the modulus).
However, the sequence $\left(q_{n}\right)_{n \geq 1}$ we consider satisfies (1) and for such a sequence we prove the following theorems:

Theorem 2. Let $a>0, n_{0}:=\min \left\{n \in \mathbb{N}: q_{n}>a\right\}$ and let the function $f:[a, \infty) \rightarrow(0, \infty)$ satisfy the conditions
(a.) f is twice differentiable with $f^{\prime}>0$,
(b.) $x^{2} f^{\prime \prime}(x) \rightarrow-\infty$ as $x \rightarrow \infty$,
(c.) $(\log x)^{2} f^{\prime \prime}(x)$ and $x(\log x)^{2} f^{\prime \prime}(x)$ are nonincreasing for sufficiently large x,
(d.) $f(x)=o\left((\log x)^{K}\right)$ for some $K>0$ as $x \rightarrow \infty$.

Then, for any nonzero real constant α, the sequence $\left(\alpha f\left(q_{n}\right)\right)_{n \geq n_{0}}$ is uniformly distributed modulo one and

$$
\begin{equation*}
D_{N} \ll \sqrt{\frac{f\left(q_{N}\right)}{\left(\log q_{N}\right)^{K}}}+\sqrt{\frac{1}{-q_{N}^{2} f^{\prime \prime}\left(q_{N}\right)}}+\frac{1}{\left(\log q_{N}\right)\left(-q_{N}^{2} f^{\prime \prime}\left(q_{N}\right)\right)} \tag{2}
\end{equation*}
$$

as $N \rightarrow \infty$.

Theorem 3. Let $a>0, n_{0}:=\min \left\{n \in \mathbb{N}: q_{n}>a\right\}$ and let the function $f:[a, \infty) \rightarrow(0, \infty)$ satisfy the conditions:
(a.) f is twice differentiable with $f^{\prime}>0$,
(b.) $x^{2} f^{\prime \prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$,
(c.) $(\log x)^{2} f^{\prime \prime}(x)$ is nonincreasing for sufficiently large x,
(d.) $f(x)=o\left((\log x)^{K}\right)$ for some $K>0$ as $x \rightarrow \infty$.

Then, for any nonzero real constant α, the sequence $\left(\alpha f\left(q_{n}\right)\right)_{n \geq n_{0}}$ is uniformly distributed modulo one and

$$
\begin{equation*}
D_{N} \ll \sqrt{\frac{f\left(q_{N}\right)}{\left(\log q_{N}\right)^{K}}}+\sqrt{\frac{1}{q_{N}^{2} f^{\prime \prime}\left(q_{N}\right)}} \tag{3}
\end{equation*}
$$

as $N \rightarrow \infty$.
Theorem 4. Let $a>0, n_{0}:=\min \left\{n \in \mathbb{N}: q_{n}>a\right\}$ and let the function $f:[a, \infty) \rightarrow(0, \infty)$ satisfy the conditions:
(a.) f is continuously differentiable,
(b.) $x f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$,
(c.) $(\log x) f^{\prime}(x)$ is monotone for sufficiently large x,
(d.) $f(x)=o\left((\log x)^{K}\right)$ for some $K>0$ as $x \rightarrow \infty$.

Then, for any nonzero real constant α, the sequence $\left(\alpha f\left(q_{n}\right)\right)_{n \geq n_{0}}$ is uniformly distributed modulo one and

$$
\begin{equation*}
D_{N} \ll \sqrt{\frac{f\left(q_{N}\right)}{\left(\log q_{N}\right)^{K}}}+\max \left\{\frac{1}{N}, \frac{1}{q_{N} f^{\prime}\left(q_{N}\right)}\right\} \tag{4}
\end{equation*}
$$

as $N \rightarrow \infty$.
In view of [1, Theorem 1] it should be remarked that in Theorem4 a replacement of conditions (a.) and (b.) by:
(a'.) f is continuously differentiable and $f(x) \rightarrow \infty$ as $x \rightarrow \infty$,
(b'.) $x\left|f^{\prime}(x)\right| \rightarrow \infty$ as $x \rightarrow \infty$,
would lead to the same discrepancy estimate, where only $f^{\prime}\left(q_{N}\right)$ has to be replaced by $\left|f^{\prime}\left(q_{N}\right)\right|$. If we compare Theorem [2 with [7, Theorem 3], one notices that the "nondecreasing" condition is replaced by "nonincreasing". It was already remarked in [6] that this replacement is necessary.

Applying Theorem 2 to the function $f(x)=(\log x)^{K}$ with an arbitrary $K>1$, we obtain that the sequence $\left(\left(\log q_{n}\right)^{K}\right)_{n \geq 1}$ is uniformly distributed modulo one. This generalises the example in [7] on the uniform distribution modulo one of the sequence $\left(\left(\log p_{n}\right)^{K}\right)_{n \geq 1}$.

Note that it was proved by Wintner [10] that the sequence $\left(\log p_{n}\right)_{n \geq 1}$ is not uniformly distributed modulo one. A shorter proof can also be found in 8 , Exercise 5.19]. Similarly, the sequence $\left(\log q_{n}\right)_{n \geq 1}$ is not uniformly distributed modulo one if (11) is replaced by $Q(x) \sim x(\log x)^{-1}$ for $x \rightarrow \infty$. The proof is analogue to the one in [8]. An example of a sequence satisfying $Q(x) \sim x(\log x)^{-1}$ for $x \rightarrow \infty$ is a sequence where each q_{n} fulfills $p_{n} \leq q_{n} \leq p_{n+1}$ (see [3], [5).

MARTIN REHBERG

2. Proofs

Except for the already pointed out change of the conditions "nondecreasing" and "nonincreasing" in Theorem2, the theorems of this paper are generalisations of the theorems in [7]. Therefore it might not be surprising that the proofs are similar. However, for the sake of completeness we state the whole proofs and do not only point out changes in the reasoning.

In the proofs we will make use of a theorem due to Erdös and Turán to estimate the discrepancy, which was proved by them in 1940:

Theorem 5. For any finite sequence x_{1}, \ldots, x_{N} of real numbers and any positive integer m, we have

$$
D_{N} \leq C \cdot\left(\frac{1}{m}+\sum_{h=1}^{m} \frac{1}{h}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i h x_{n}}\right|\right)
$$

where C is an absolute constant.
Proof of Theorem 5 can be found in 4. In addition, we need the following estimates
Lemma 6. Let $F(x)$ and $G(x)$ be real functions, $\frac{G(x)}{F(x)}$ monotone and $\frac{F^{\prime}(x)}{G(x)} \geq$ $m>0$, or $\frac{F^{\prime}(x)}{G(x)} \leq-m<0$. Then

$$
\left|\int_{a}^{b} G(x) e^{i F(x)} d x\right| \leq \frac{4}{m}
$$

Lemma 7. Let $G(x)$ be a positive decreasing function.
(a.) If $F^{\prime \prime}(x)<0, F^{\prime}(x) \geq 0$ and $\frac{G^{\prime}(x)}{F^{\prime \prime}(x)}$ is monotone, then

$$
\left|\int_{a}^{b} G(x) e^{2 \pi i F(x)} d x\right| \leq 4 \max _{a \leq x \leq b}\left\{\frac{G(x)}{\left|F^{\prime \prime}(x)\right|^{\frac{1}{2}}}\right\}+\max _{a \leq x \leq b}\left\{\left|\frac{G^{\prime}(x)}{F^{\prime \prime}(x)}\right|\right\}
$$

(b.) If $F^{\prime \prime}(x)>0$ and $F^{\prime}(x) \geq 0$, then

$$
\left|\int_{a}^{b} G(x) e^{2 \pi i F(x)} d x\right| \leq 4 \max _{a \leq x \leq b}\left\{\frac{G(x)}{F^{\prime \prime}(x)^{\frac{1}{2}}}\right\}
$$

The first Lemma can be found in [9, Lemma 4.3] and the second one in [11, Lemma 10.2, Lemma 10.3, p.225].

LOG-LIKE FUNCTIONS

Proof of Theorem (2) Note first that it is enough to prove (22), (3) and (4) for $\alpha>0$. If we replace f by $\frac{1}{\alpha} f$ we see that it is enough to prove these statements for $\alpha=1$. In view of condition (b.) we can assume that $f^{\prime \prime}(x)<0$ for sufficiently large x. Further, we may assume that for $x \geq a$ we have $f^{\prime \prime}(x)<0$ and that both $(\log x)^{2} f^{\prime \prime}(x)$ and $x(\log x)^{2} f^{\prime \prime}(x)$ are nonincreasing for $x \geq a$. To prove that the sequence $\left(f\left(q_{n}\right)\right)_{n \geq n_{0}}$ is uniformly distributed modulo one, it is enough to prove estimation (2). In view of conditions (b.) and (d.), the term on the right side in (2) surely tends to zero as N tends to infinity. To obtain (2), our aim is to apply Theorem 5 in the form

$$
\begin{equation*}
D_{N} \ll \frac{1}{m}+\sum_{h=n_{0}}^{m} \frac{1}{h}\left|\frac{1}{N} \sum_{n=n_{0}}^{N} e^{2 \pi i h f\left(q_{n}\right)}\right| \tag{5}
\end{equation*}
$$

where m is an arbitrary positive integer to be specified later. The essential point is to estimate the exponential sum in (5). Therefore let $q_{0}:=\frac{q_{n_{0}}+a}{2}$ and $\chi(n)$ be the characteristic function of the sequence $\left(q_{n}\right)_{n \geq 1}$, i.e., $\chi(n)=1$ if n is a member of the sequence $\left(q_{n}\right)_{n \geq 1}$ and zero otherwise. Then $\sum_{m \leq x} \chi(n)=Q(x)$ and integration by parts yields

$$
\begin{aligned}
E\left(n_{0}, N ; q_{n}\right): & =\sum_{n=n_{0}}^{N} e^{2 \pi i h f\left(q_{n}\right)}=\sum_{q_{0}<m \leq q_{N}} e^{2 \pi i h f(m)} \chi(m) \\
= & \int_{q_{0}}^{q_{N}} e^{2 \pi i h f(x)} \mathrm{d} Q(x) \\
= & Q\left(q_{N}\right) e^{2 \pi i h f\left(q_{N}\right)}-Q\left(q_{0}\right) e^{2 \pi i h f\left(q_{0}\right)} \\
& -\int_{q_{0}}^{q_{N}}\left(L^{*}(x)+R^{*}(x)\right) \mathrm{d} e^{2 \pi i h f(x)}
\end{aligned}
$$

where $R^{*}(x):=Q(x)-L^{*}(x), L^{*}(x):=c \int_{q_{0}}^{x} \frac{d t}{\log t}$ for $c>0$ constant, $x \geq q_{0}$ and $\int_{a}^{b}:=\int_{(a, b]}$. Again by integration by parts,
and

$$
\begin{aligned}
\int_{q_{0}}^{q_{N}} L^{*}(x) \mathrm{d} e^{2 \pi i h f(x)}= & L^{*}\left(q_{N}\right) e^{2 \pi i h f\left(q_{N}\right)}-L^{*}\left(q_{0}\right) e^{2 \pi i h f\left(q_{0}\right)} \\
& -c \int_{q_{0}}^{q_{N}}(\log x)^{-1} e^{2 \pi i h f(x)} d x
\end{aligned}
$$

$$
\int_{q_{0}}^{q_{N}} R^{*}(x) \mathrm{d} e^{2 \pi i h f(x)}=2 \pi i h \int_{q_{0}}^{q_{N}} R^{*}(x) f^{\prime}(x) e^{2 \pi i h f(x)} d x .
$$

MARTIN REHBERG

Therefore,

$$
\begin{aligned}
E\left(n_{0}, N ; q_{n}\right)= & \left(R^{*}\left(q_{N}\right) e^{2 \pi i h f\left(q_{N}\right)}-R^{*}\left(q_{0}\right) e^{2 \pi i h f\left(q_{0}\right)}\right) \\
& +c \int_{q_{0}}^{q_{N}}(\log x)^{-1} e^{2 \pi i h f(x)} d x \\
& -2 \pi i h \int_{q_{0}}^{q_{N}} R^{*}(x) f^{\prime}(x) e^{2 \pi i h f(x)} d x \\
= & I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where we used $R^{*}(x)=Q(x)-L^{*}(x)$. Now we estimate each $I_{i}(i=1,2,3)$ individually: In view of our assumption (11), we get

$$
\begin{equation*}
R^{*}(x)=Q(x)-c \int_{q_{0}}^{x} \frac{d t}{\log t} \ll \frac{x}{(\log x)^{k}} \tag{6}
\end{equation*}
$$

for every $k>1$, implying

$$
\begin{equation*}
I_{1} \ll \frac{q_{N}}{\left(\log q_{N}\right)^{1+K}} \tag{7}
\end{equation*}
$$

for $K>0$ as $N \rightarrow \infty$. By estimation (6) and condition (a),

$$
\begin{equation*}
I_{3} \ll h \frac{q_{N} f\left(q_{N}\right)}{\left(\log q_{N}\right)^{1+K}}, \tag{8}
\end{equation*}
$$

so it remains to estimate I_{2}. First, let us remark that (8) for $N \rightarrow \infty$ is also an estimation for (7), since $f>0$ and h is a positive integer. To estimate I_{2} we apply Lemma 7 (a.) to get

$$
\begin{aligned}
I_{2} & \ll \max _{q_{0} \leq x \leq q_{n}}\left\{\frac{4}{\left|h(\log x)^{2} f^{\prime \prime}(x)\right|^{\frac{1}{2}}}+\left|\frac{1}{h x(\log x)^{2} f^{\prime \prime}(x)}\right|\right\} \\
& \ll \frac{1}{\left(\log q_{N}\right)\left(-h f^{\prime \prime}\left(q_{N}\right)\right)^{\frac{1}{2}}}+\frac{1}{q_{N}\left(\log q_{N}\right)^{2}\left(-h f^{\prime \prime}\left(q_{N}\right)\right)}
\end{aligned}
$$

as $N \rightarrow \infty$. Note that for the last estimation condition (c.) is needed in terms of "nonincreasing". Putting our estimation for I_{2} and (8) in (5) yields

$$
\begin{equation*}
D_{N} \ll \frac{1}{m}+\frac{1}{N\left(\log q_{N}\right)\left(-f^{\prime \prime}\left(q_{N}\right)\right)^{\frac{1}{2}}}+\frac{1}{N q_{N}\left(\log q_{N}\right)^{2}\left(-f^{\prime \prime}\left(q_{N}\right)\right)}+\frac{m q_{N} f\left(q_{N}\right)}{N\left(\log q_{N}\right)^{1+K}} \tag{9}
\end{equation*}
$$

for $N \rightarrow \infty$. After comparing the first and the last term in (9), we choose

$$
m=\left[\left(N \cdot \frac{\left(\log q_{N}\right)^{1+K}}{q_{N} f\left(q_{N}\right)}\right)^{\frac{1}{2}}\right]
$$

LOG-LIKE FUNCTIONS

Using this together with $Q\left(q_{N}\right)=N$ and $Q(x)=\frac{c x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right)$, we end up with our desired estimation (2).

Proof of Theorem 3 In respect of condition (b.) we can assume that $f^{\prime \prime}(x)>0$ for sufficiently large x. Further, we may assume that for $x \geq a$ we have $f^{\prime \prime}(x)>0$ and that $(\log x)^{2} f^{\prime \prime}(x)$ is nonincreasing for $x \geq a$. Like in the proof of the previous theorem, we will show that the discrepancy D_{N} of the sequence $\left(f\left(q_{n}\right)\right)_{n=n_{0}}^{N}$ tends to zero as $N \rightarrow \infty$. Since the estimations (7) and (8) for I_{1} and I_{3} still hold in the considered setting, it remains to estimate I_{2}. By applying Lemma 7 (b.) we get

$$
I_{2} \ll \max _{q_{0} \leq x \leq q_{N}}\left\{\frac{1}{\left(h(\log x)^{2} f^{\prime \prime}(x)\right)^{\frac{1}{2}}}\right\}=\frac{1}{\left(h\left(\log q_{N}\right)^{2} f^{\prime \prime}\left(q_{N}\right)\right)^{\frac{1}{2}}}
$$

Combining this with (77) and (8) we obtain in (5)

$$
D_{N} \ll \frac{1}{m}+\frac{m q_{N} f\left(q_{N}\right)}{N\left(\log q_{N}\right)^{1+K}}+\frac{1}{\left(q_{N}^{2} f^{\prime \prime}\left(q_{N}\right)\right)^{\frac{1}{2}}},
$$

where we used $Q\left(q_{N}\right)=N$ and $Q(x)=\frac{c x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right)$. Choosing

$$
m=\left[\left(N \cdot \frac{\left(\log q_{N}\right)^{1+K}}{q_{N} f\left(q_{N}\right)}\right)^{\frac{1}{2}}\right]
$$

we get

$$
D_{N} \ll\left(\frac{f\left(q_{N}\right)}{\left(\log q_{N}\right)^{K}}\right)^{\frac{1}{2}}+\frac{1}{\left(q_{N}^{2} f^{\prime \prime}\left(q_{N}\right)\right)}
$$

which tends to zero as $N \rightarrow \infty$ in view of (b.) and (d.).

Proof of Theorem 4. With respect to condition (b.) we can assume that $f^{\prime}(x)>0$ for sufficiently large x. Further, we may assume that for $x \geq a$ we have $f^{\prime}(x)>0$ and that $(\log x) f^{\prime}(x)$ is monotone for $x \geq a$. As in the previous proofs, we will show that the discrepancy D_{N} of the sequence $\left(f\left(q_{n}\right)\right)_{n=n_{0}}^{N}$ tends to zero as $N \rightarrow \infty$. Since the estimations (7) and (8) for I_{1} and I_{3} still hold in the considered setting, it remains to estimate I_{2}. Applying Lemma 6 yields

$$
I_{2} \ll \frac{1}{h} \cdot \max \left\{1, \frac{1}{\left[\log q_{N} f^{\prime}\left(q_{N}\right)\right]}\right\}
$$

MARTIN REHBERG

Thus, together with (7) and (8) in (5), we get

$$
\begin{aligned}
D_{N} & \ll \frac{1}{m}+\max \left\{\frac{1}{N}, \frac{1}{N\left[\log q_{N} f^{\prime}\left(q_{N}\right)\right]}\right\}+\frac{m q_{N} f\left(q_{N}\right)}{N\left(\log q_{N}\right)^{1+K}} \\
& \ll \frac{1}{m}+\max \left\{\frac{1}{N}, \frac{1}{\left[q_{N} f^{\prime}\left(q_{N}\right)\right]}\right\}+\frac{m q_{N} f\left(q_{N}\right)}{N\left(\log q_{N}\right)^{1+K}},
\end{aligned}
$$

where we used in the second argument in the maximum that $Q\left(q_{N}\right)=N$ and $Q(x)=\frac{c x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right)$. After comparing the first and the last term in the discrepancy estimate, we choose

$$
m=\left[\left(N \cdot \frac{\left(\log q_{N}\right)^{1+K}}{q_{N} f\left(q_{N}\right)}\right)^{\frac{1}{2}}\right]
$$

and get

$$
D_{N} \ll\left(\frac{f\left(q_{N}\right)}{\left(\log q_{N}\right)^{K}}\right)^{\frac{1}{2}}+\max \left\{\frac{1}{N}, \frac{1}{\left[q_{N} f^{\prime}\left(q_{N}\right)\right]}\right\} .
$$

By condition (b.) and (d.) this tends to zero as N tends to infinity.
Acknowledgements 1. I would like to thank Prof. J. Schoißengeier for his valuable corrections and comments.

REFERENCES

[1] GOTO, K.-KANO, T.: Uniform Distribution of Some Special Sequences, Proc. Japan Acad. Ser. A 61 (1985), no. 3, 83-86.
[2] ___ Remarks to our Former Paper Uniform Distribution of Some Special Sequences, Proc. Japan Acad. Ser. A 68 (1992), no. 10, 348-350.
[3] GROSSWALD, E.-SCHNITZER, F.J.: A Class of modified ζ and L-Functions, Pacific Journal of Mathematics 74 (1978), no. 2, 357-364.
[4] KUIPERS, L.-NIEDERREITER, H.: Uniform Distribution of Sequences. Dover Publications, New York 2006.
[5] MÜLLER, H.: Über eine Klasse modifizierter ζ - und L-Funktionen, Arch. Math. 36 (1981), 157-161.
[6] STRAUCH, O.-PORUBSKÝ, Š.: Distribution of Sequences: A Sampler. eBook, 2016. https://math.boku.ac.at/udt/books/MYBASISNew.pdf
[7] TOO, Y.-H.: On the Uniform Distribution Modulo One of Some Log-like Sequences, Proc. Japan Acad. Ser. A 68 (1992), no. 9, 269-272.
[8] PARENT, D. P.: Exercises in Number Theory. Springer, New York 1984.

LOG-LIKE FUNCTIONS

[9] TITCHMARSH, E. C.: The Theory of the Riemann Zeta-Function. Oxford University Press, second edition, New York 1986.
[10] WINTNER, A.: On the cyclical distribution of the logarithms of the prime numbers, Quart. J. Math. 6 (1935), no. 1, 65-68.
[11] ZYGMUND, A.: Trigonometric Series. Cambridge University Press, third edition, London 2002.

Received October 20, 2017
Accepted February 2, 2018

Martin Rehberg
Technische Hochschule Mittelhessen, Department MND
Wilhelm-Leuschner-Str. 13
61169 Friedberg
GERMANY
E-mail: martin.rehberg@mnd.thm.de

[^0]: 2010 Mathematics Subject Classification: 11J71, 11 K38. Keywords: Uniform Distribution, Discrepancy.

