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LOG-LIKE FUNCTIONS AND

UNIFORM DISTRIBUTION MODULO ONE

Martin Rehberg

Technische Hochschule Mittelhessen, Friedberg, GERMANY

ABSTRACT. For a function f satisfying f(x) = o((log x)K), K > 0, and a
sequence of numbers (qn)n, we prove by assuming several conditions on f that
the sequence (αf(qn))n≥n0

is uniformly distributed modulo one for any nonzero
real number α. This generalises some former results due to Too, Goto and Kano
where instead of (qn)n the sequence of primes was considered.

Communicated by Werner Georg Nowak

1. Introduction and results

Let pn be the nth prime number in ascending order and α a nonzero real
number. Then G o t o and K a n o [1], [2], as well as Too [7], proved by assuming
several conditions on the function f that the sequence (αf(pn))n is uniformly
distributed modulo one. Recall that a sequence (xn)n∈N of real numbers is said
to be uniformly distributed modulo one if for every pair α, β of real numbers with
0 ≤ α < β ≤ 1 the proportion of the fractional parts of the xn in the interval
[α, β) tends to its length in the following sense:

lim
N→∞

#{1 ≤ n ≤ N : {xn} ∈ [α, β)}
N

= β − α.

In fact G o t o, K a n o and T o o proved their results by determining a bound
for the discrepancy of the considered sequence.

���������� 1� Let x1, ..., xN be a finite sequence of real numbers. The number

DN := DN (x1, . . . , xN ) := sup
0≤α<β≤1

∣∣∣∣#{1 ≤ n ≤ N : {xn} ∈ [α, β)}
N

− (β − α)

∣∣∣∣
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is called the discrepancy of the given sequence. If ω = (xn) is an infinite
sequence (or a finite sequence containing at least N terms), DN (ω) is meant to
be the discrepancy of the first N terms of ω.

It is well known that a sequence ω = (xn)n∈N
is uniformly distributed modulo

one if and only if limN→∞ DN (ω) = 0. Instead of the sequence of primes, which
was investigated in [1], [2] and [7], we consider a sequence of real numbers (qn)n≥1

satisfying 1 < q1 < q2 < · · · with qn → ∞ as n → ∞. Further, we assume that
the sequence (qn)n≥1 satisfies

Q(x)− c

∫ x

2

dt

log t
� x

(log x)k
(1)

for every positive k > 1, where Q(x) :=
∑

qn≤x 1 and c > 0 is some constant.

Note that condition (1) holds for the sequence of primes (with c = 1), as well
as for primes in arithmetic progressions (with c = ϕ(q)−1, where ϕ is Euler’s
function and q is the modulus).
However, the sequence (qn)n≥1 we consider satisfies (1) and for such a sequence
we prove the following theorems:

	
����� 2� Let a > 0, n0 := min{n ∈ N : qn > a} and let the function
f : [a,∞) → (0,∞) satisfy the conditions

(a.) f is twice differentiable with f ′ > 0,

(b.) x2f ′′(x) → −∞ as x → ∞,

(c.) (log x)
2
f ′′(x) and x (log x)

2
f ′′(x) are nonincreasing for sufficiently large x,

(d.) f(x) = o
(
(log x)K

)
for some K > 0 as x → ∞.

Then, for any nonzero real constant α, the sequence
(
αf(qn)

)
n≥n0

is uniformly

distributed modulo one and

DN �
√

f(qN )

(log qN )K
+

√
1

−q2Nf ′′(qN )
+

1

(log qN )(−q2Nf ′′(qN ))
(2)

as N → ∞.

	
����� 3� Let a > 0, n0 := min{n ∈ N : qn > a} and let the function
f : [a,∞) → (0,∞) satisfy the conditions:

(a.) f is twice differentiable with f ′ > 0,

(b.) x2f ′′(x) → ∞ as x → ∞,

(c.) (log x)2 f ′′(x) is nonincreasing for sufficiently large x,

(d.) f(x) = o
(
(log x)K

)
for some K > 0 as x → ∞.
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Then, for any nonzero real constant α, the sequence
(
αf(qn)

)
n≥n0

is uniformly

distributed modulo one and

DN �
√

f(qN )

(log qN )K
+

√
1

q2Nf ′′(qN)
(3)

as N → ∞.

	
����� 4� Let a > 0, n0 := min{n ∈ N : qn > a} and let the function
f : [a,∞) → (0,∞) satisfy the conditions:

(a.) f is continuously differentiable,

(b.) xf ′(x) → ∞ as x → ∞,

(c.) (log x) f ′(x) is monotone for sufficiently large x,

(d.) f(x) = o
(
(log x)K

)
for some K > 0 as x → ∞.

Then, for any nonzero real constant α, the sequence
(
αf(qn)

)
n≥n0

is uniformly

distributed modulo one and

DN �
√

f(qN )

(log qN )K
+max

{
1

N
,

1

qNf ′(qN )

}
(4)

as N → ∞.

In view of [1, Theorem 1] it should be remarked that in Theorem 4 a replacement
of conditions (a.) and (b.) by:

(a’.) f is continuously differentiable and f(x) → ∞ as x → ∞,

(b’.) x |f ′(x)| → ∞ as x → ∞,

would lead to the same discrepancy estimate, where only f ′(qN ) has to be re-
placed by |f ′(qN )|. If we compare Theorem 2 with [7, Theorem 3], one notices
that the “nondecreasing” condition is replaced by “nonincreasing”. It was al-
ready remarked in [6] that this replacement is necessary.

Applying Theorem 2 to the function f(x) = (log x)K with an arbitraryK > 1,
we obtain that the sequence

(
(log qn)

K
)
n≥1

is uniformly distributed modulo one.

This generalises the example in [7] on the uniform distribution modulo one of the
sequence

(
(log pn)

K
)
n≥1

.

Note that it was proved by W i n t n e r [10] that the sequence (log pn)n≥1 is
not uniformly distributed modulo one. A shorter proof can also be found in [8,
Exercise 5.19]. Similarly, the sequence (log qn)n≥1 is not uniformly distributed
modulo one if (1) is replaced by Q(x) ∼ x(log x)−1 for x → ∞. The proof is
analogue to the one in [8]. An example of a sequence satisfying Q(x) ∼ x(log x)−1

for x → ∞ is a sequence where each qn fulfills pn ≤ qn ≤ pn+1 (see [3], [5]).
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2. Proofs

Except for the already pointed out change of the conditions “nondecreasing”
and “nonincreasing” in Theorem 2, the theorems of this paper are generalisations
of the theorems in [7]. Therefore it might not be surprising that the proofs are
similar. However, for the sake of completeness we state the whole proofs and do
not only point out changes in the reasoning.

In the proofs we will make use of a theorem due to E r d ö s and T u r á n to
estimate the discrepancy, which was proved by them in 1940:

	
����� 5� For any finite sequence x1, . . . , xN of real numbers and any positive
integer m, we have

DN ≤ C ·
(

1

m
+

m∑
h=1

1

h

∣∣∣∣ 1N
N∑

n=1

e2πihxn

∣∣∣∣
)
,

where C is an absolute constant.

P r o o f o f T h e o r e m 5. can be found in [4]. In addition, we need the follow-
ing estimates

���� 6� Let F (x) and G(x) be real functions, G(x)
F (x) monotone and F ′(x)

G(x) ≥
m > 0, or F ′(x)

G(x) ≤ −m < 0. Then∣∣∣∣∣
∫ b

a

G(x)eiF (x)dx

∣∣∣∣∣ ≤ 4

m
.

���� 7� Let G(x) be a positive decreasing function.

(a.) If F ′′(x) < 0, F ′(x) ≥ 0 and G′(x)
F ′′(x) is monotone, then∣∣∣∣∣

∫ b

a

G(x)e2πiF (x)dx

∣∣∣∣∣ ≤ 4 max
a≤x≤b

{
G(x)

|F ′′(x)| 12

}
+ max

a≤x≤b

{∣∣∣∣G′(x)
F ′′(x)

∣∣∣∣
}
.

(b.) If F ′′(x) > 0 and F ′(x) ≥ 0, then∣∣∣∣∣
∫ b

a

G(x)e2πiF (x)dx

∣∣∣∣∣ ≤ 4 max
a≤x≤b

{
G(x)

F ′′(x)
1
2

}
.

The first Lemma can be found in [9, Lemma 4.3] and the second one in [11,
Lemma 10.2, Lemma 10.3, p.225]. �
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P r o o f o f T h e o r e m 2. Note first that it is enough to prove (2), (3) and (4)
for α > 0. If we replace f by 1

αf we see that it is enough to prove these statements
for α = 1. In view of condition (b.) we can assume that f ′′(x) < 0 for sufficiently
large x. Further, we may assume that for x ≥ a we have f ′′(x) < 0 and that
both (log x)2f ′′(x) and x(log x)2f ′′(x) are nonincreasing for x ≥ a. To prove
that the sequence (f(qn))n≥n0

is uniformly distributed modulo one, it is enough
to prove estimation (2). In view of conditions (b.) and (d.), the term on the right
side in (2) surely tends to zero as N tends to infinity. To obtain (2), our aim is
to apply Theorem 5 in the form

DN � 1

m
+

m∑
h=n0

1

h

∣∣∣∣ 1N
N∑

n=n0

e2πihf(qn)
∣∣∣∣, (5)

where m is an arbitrary positive integer to be specified later. The essential point

is to estimate the exponential sum in (5). Therefore let q0 :=
qn0

+a

2 and χ(n)
be the characteristic function of the sequence (qn)n≥1, i.e., χ(n) = 1 if n is a
member of the sequence (qn)n≥1 and zero otherwise. Then

∑
m≤x χ(n) = Q(x)

and integration by parts yields

E(n0, N ; qn) :=

N∑
n=n0

e2πihf(qn) =
∑

q0<m≤qN

e2πihf(m)χ(m)

=

∫ qN

q0

e2πihf(x) dQ(x)

= Q(qN )e2πihf(qN) −Q(q0)e
2πihf(q0)

−
∫ qN

q0

(
L∗(x) +R∗(x)

)
d e2πihf(x),

where R∗(x) := Q(x)−L∗(x), L∗(x) := c
∫ x

q0
dt

log t for c > 0 constant, x ≥ q0 and∫ b

a
:=
∫
(a,b]

. Again by integration by parts,

∫ qN

q0

L∗(x) d e2πihf(x) = L∗(qN)e2πihf(qN) − L∗(q0)e2πihf(q0)

− c

∫ qN

q0

(log x)−1e2πihf(x)dx

and ∫ qN

q0

R∗(x) d e2πihf(x) = 2πih

∫ qN

q0

R∗(x)f ′(x)e2πihf(x)dx.
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Therefore,

E(n0, N ; qn) =
(
R∗(qN )e2πihf(qN) − R∗(q0)e2πihf(q0)

)
+ c

∫ qN

q0

(log x)−1e2πihf(x)dx

− 2πih

∫ qN

q0

R∗(x)f ′(x)e2πihf(x)dx

=: I1 + I2 + I3,

where we used R∗(x) = Q(x) − L∗(x). Now we estimate each Ii (i = 1, 2, 3)
individually: In view of our assumption (1), we get

R∗(x) = Q(x)− c

∫ x

q0

dt

log t
� x

(log x)k
(6)

for every k > 1, implying

I1 � qN
(log qN )1+K

(7)

for K > 0 as N → ∞. By estimation (6) and condition (a),

I3 � h
qNf(qN )

(log qN )1+K
, (8)

so it remains to estimate I2. First, let us remark that (8) for N → ∞ is also
an estimation for (7), since f > 0 and h is a positive integer. To estimate I2 we
apply Lemma 7 (a.) to get

I2 � max
q0≤x≤qn

{
4

|h(log x)2f ′′(x)| 12
+

∣∣∣∣ 1

hx(log x)2f ′′(x)

∣∣∣∣
}

� 1

(log qN ) (−hf ′′(qN ))
1
2

+
1

qN (log qN )2 (−hf ′′(qN))

as N → ∞. Note that for the last estimation condition (c.) is needed in terms
of “nonincreasing”. Putting our estimation for I2 and (8) in (5) yields

DN � 1

m
+

1

N(log qN ) (−f ′′(qN ))
1
2

+
1

NqN (log qN )2 (−f ′′(qN ))
+

mqNf(qN )

N(log qN )1+K

(9)
for N → ∞. After comparing the first and the last term in (9), we choose

m =

[(
N · (log qN )1+K

qNf(qN )

) 1
2

]
.
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Using this together with Q(qN ) = N and Q(x) = cx
log x +O

(
x

(log x)2

)
, we end up

with our desired estimation (2). �

P r o o f o f T h e o r e m 3. In respect of condition (b.) we can assume that
f ′′(x) > 0 for sufficiently large x. Further, we may assume that for x ≥ a
we have f ′′(x) > 0 and that (log x)2f ′′(x) is nonincreasing for x ≥ a. Like in the
proof of the previous theorem, we will show that the discrepancy DN of the
sequence (f(qn))

N
n=n0

tends to zero as N → ∞. Since the estimations (7) and
(8) for I1 and I3 still hold in the considered setting, it remains to estimate I2.
By applying Lemma 7 (b.) we get

I2 � max
q0≤x≤qN

{
1

(h(log x)2f ′′(x))
1
2

}
=

1

(h(log qN )2f ′′(qN ))
1
2

.

Combining this with (7) and (8) we obtain in (5)

DN � 1

m
+

mqNf(qN )

N(log qN )1+K
+

1

(q2Nf ′′(qN ))
1
2

,

where we used Q(qN ) = N and Q(x) = cx
log x +O

(
x

(log x)2

)
. Choosing

m =

[(
N · (log qN )1+K

qNf(qN )

)1
2

]
,

we get

DN �
(

f(qN )

(log qN )K

)1
2

+
1

(q2Nf ′′(qN ))
,

which tends to zero as N → ∞ in view of (b.) and (d.). �

P r o o f o f T h e o r e m 4. With respect to condition (b.) we can assume that
f ′(x) > 0 for sufficiently large x. Further, we may assume that for x ≥ a we
have f ′(x) > 0 and that (log x)f ′(x) is monotone for x ≥ a. As in the previous
proofs, we will show that the discrepancy DN of the sequence (f(qn))

N
n=n0

tends
to zero as N → ∞. Since the estimations (7) and (8) for I1 and I3 still hold in
the considered setting, it remains to estimate I2. Applying Lemma 6 yields

I2 � 1

h
·max

{
1,

1

[log qNf ′(qN )]

}
.
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Thus, together with (7) and (8) in (5), we get

DN � 1

m
+max

{
1

N
,

1

N [log qNf ′(qN )]

}
+

mqNf(qN )

N (log qN )
1+K

� 1

m
+max

{
1

N
,

1

[qNf ′(qN )]

}
+

mqNf(qN )

N (log qN )
1+K

,

where we used in the second argument in the maximum that Q(qN ) = N and

Q(x) = cx
log x + O

(
x

(log x)2

)
. After comparing the first and the last term in the

discrepancy estimate, we choose

m =

[(
N · (log qN )1+K

qNf(qN )

)1
2

]
,

and get

DN �
(

f(qN )

(log qN )K

)1
2

+max

{
1

N
,

1

[qNf ′(qN )]

}
.

By condition (b.) and (d.) this tends to zero as N tends to infinity. �

���������������� 1� I would like to thank Prof. J. S c h o i ß e n g e i e r
for his valuable corrections and comments.
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