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ON THE CLASSIFICATION OF LS-SEQUENCES

Christian Weiß

Hochschule Ruhr West, Mülheim an der Ruhr, GERMANY

ABSTRACT. This paper addresses the question whether the LS-sequences con-
structed in [Car12] yield indeed a new family of low-discrepancy sequences. While
it is well known that the case S = 0 corresponds to van der Corput sequences,
we prove here that the case S = 1 can be traced back to symmetrized Kronecker

sequences and moreover that for S ≥ 2 none of these two types occurs anymore.
In addition, our approach allows for an improved discrepancy bound for S = 1
and L arbitrary.

Communicated by Michael Drmota

1. Introduction

There are essentially three classical families of low-discrepancy sequences,
namely Kronecker sequences, digital sequences and Halton sequences (compare
[Lar14], see also [Nie92]). In [Car12], C a r b o n e constructed a class of one-
dimen-sional low-discrepancy sequences, called LS-sequences with L ∈ N and
S ∈ N0. The case S = 0 corresponds to the classical one dimensional Halton
sequences, called van der Corput sequences. However, the question whether LS-
-sequences indeed yield a new family of low-discrepancy sequences for S ≥ 1 or if
it is just a different way to write down already known low-discrepancy sequences
has not been answered yet. In this paper, we address this question and thereby
derive improved discrepancy bounds for the case S = 1.
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Discrepancy. Let S = (zn)n≥0 be a sequence in [0, 1)d. Then the discrepancy
of the first N points of the sequence is defined by

DN (S) := sup
B⊂[0,1)d

∣∣∣∣AN (B)

N
− λd(B)

∣∣∣∣ ,
where the supremum is taken over all axis-parallel subintervals B ⊂ [0, 1)d

and AN (B) := # {n | 0 ≤ n < N, zn ∈ B} and λd denotes the d-dimensional
Lebesgue-measure. In the following we restrict to the case d = 1. If DN (S)
satisfies

DN (S) = O(N−1 logN),

then S is called a low-discrepancy sequence. In dimension one this is indeed
the best possible rate as was proved by S c hm i d t in [Sch72], that there exists
a constant c with

DN (S) ≥ cN−1 logN.

The precise value of the constant c is still unknown (see, e.g., [Lar14]). For
a discussion of the situation in higher dimensions see, e.g., [Nie92, Chapter 3].

A theorem of W e y l and K o k sm a’s inequality imply that a sequence of points
(zn)n≥0 is uniformly distributed if and only if

lim
N→∞

DN (zn) = 0.

Thus, the only candidates for low-discrepancy sequences are uniformly distri-
buted sequences. A specific way to construct uniformly distributed sequences
goes back to the work of K a k u t a n i [Kak76] and was later on generalized
in [Vol11] in the following sense.

���������� 1.1� Let ρ denote a non-trivial partition of [0, 1). Then the ρ-re-
finement of a partition π of [0, 1), denoted by ρπ, is defined by subdividing all
intervals of maximal length positively homothetically to ρ.

Successive application of a ρ-refinement results in a sequence which is de-
noted by {ρnπ}n∈N

. The special case of Kakutani’s α-refinement is obtained
by successive ρ-refinements, where ρ = {[0, α), [α, 1)}. If π is the trivial partition
π = {[0, 1)}, then we obtain Kakutani’s-α-sequence. In many articles Kaku-
tani’s α-sequence serves as a standard example and the general results derived
therein may be applied to this case (see, e.g., [CV07], [DI12], [IZ17], [Vol11]).
Another specific class of examples of ρ-refinement was introduced in [Car12].

���������� 1.2� Let L ∈ N, S ∈ N0 and β be the solution of Lβ + Sβ2 = 1.
An LS-sequence of partitions

{
ρnL,Sπ

}
n∈N

is the successive ρ-refinement

of the trivial partition π = {[0, 1)} where ρL,S consists of L+S intervals such that
the first L intervals have length β and the successive S intervals have length β2.
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The partition
{
ρnL,Sπ

}
consists of intervals only of length βn and βn+1. Its

total number of intervals is denoted by tn, the number of intervals of length βn

by ln and the number of intervals of length βn+1 by sn. In [Car12], C a r b o n e
derived the recurrence relations:

tn = Ltn−1 + Stn−2,

ln = Lln−1 + Sln−2,

sn = Lsn−1 + Ssn−2

for n ≥ 2 with initial conditions:

t0 = 1, t1 = L+ S, l0 = 1, l1 = L, s0 = 0 and s1 = S.

Based on these relations, C a r b o n e defined a possible ordering of the endpoints
of the partition yielding the LS-sequence of points. One of the observations
of this paper is that this ordering indeed yields a simple and easy-to-implement
algorithm but also has a certain degree of arbitrariness.

���������� 1.3� Given an LS-sequence of partitions
{
ρnL,Sπ

}
n∈N

, the corre-

sponding LS-sequence of points (ξn)n∈N is defined as follows:
let Λ1

L,S be the first t1 left endpoints of the partiton ρL,Sπ ordered by magnitude.

Given Λn
L,S=

{
ξ
(n)
1 , . . . , ξ

(n)
tn

}
an ordering of Λn+1

L,S is then inductively defined as

Λn+1
L,S =

{
ξ
(n)
1 , . . . , ξ

(n)
tn
,

ψ
(n+1)
1,0

(
ξ
(n)
1

)
, . . . , ψ

(n+1)
1,0

(
ξ
(n)
ln

)
, . . . , ψ

(n+1)
L,0

(
ξ
(n)
1

)
, . . . , ψ

(n+1)
L,0

(
ξ
(n)
ln

)
,

ψ
(n+1)
L,1

(
ξ
(n)
1

)
, . . . , ψ

(n+1)
L,1

(
ξ
(n)
ln

)
, . . . , ψ

(n+1)
L,S−1

(
ξ
(n)
1

)
, . . . , ψ

(n+1)
L,S−1

(
ξ
(n)
ln

)}
,

where

ψ
(n)
i,j (x) = x+ iβn + jβn+1, x ∈ R.

As the definition of LS-sequences might not be completely intuitive at first
sight, we illustrate it by an explicit example.

	
��
�� 1.4� For L = S = 1 the LS-sequence coincides with the so-called
Kakutani-Fibonacci sequence (see [CIV14]). We have

Λ1
1,1 = {0, β} ,

Λ2
1,1 =

{
0, β, β2

}
,

Λ3
1,1 =

{
0, β, β2, β3, β + β3

}
,

Λ4
1,1 =

{
0, β, β2, β3, β + β3, β4, β + β4, β2 + β4

}
and so on.
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������� 1.5 (Carbone,[Car12])� If L ≥ S, then the corresponding LS-sequence
has low-discrepancy.

C a r b o n e’s proof is based on counting arguments but does not give explicit
discrepancy bounds. These have been derived later by I a c ò and Z i e g l e r
in [IZ17] using so-called generalized LS-sequences. A more general result impli-
cating also the low-discrepancy of LS-sequences can be found in [AH13].

������� 1.6 (I a c ò , Z i e g l e r , [IZ17], Theorem 1, Section 3)� If (ξn)n∈N is
an LS-sequence with L ≥ S, then

DN (ξn) ≤ B log(N)

N | log(β)| +
B + 2

N
,

where

B=(2L+S − 2)
(

R
1−Sβ+1

)
, with R=max {|τ1|, |τ1+(L+S−2)λ1|} ,

τ1 = −L−2S+
√
L2+4S

2
√
L2+4S

and λ1 = −L+
√
L2+4S

2
√
L2+4S

.

It has been pointed out that for parameters S = 0 and L = b, the corre-
sponding LS-sequence conincides with the classical van der Corput sequence,
see, e.g., [AHZ14].1 However, for higher values of S it has been not been proved
if LS-sequences indeed yield a new family of examples of low-discrepancy se-
quences or are just a new formulation of some of the well-known ones. We close
this gap to a certain extent by showing the following main result:

������� 1.7� For S = 1, the LS-sequences is a reordering of the symmetrized
Kronecker sequences ({nβ})n∈Z. For S ≥ 2 the LS-construction neither yields
a (re-)ordering of a van der Corput sequence nor of a (symmetrized) Kronecker
sequence.

Let us make the notion of symmetrized Kronecker sequences more precise:
given z∈R, let {z} :=z− �z� denote the fractional part of z. A (classical) Kro-
necker sequence is a sequence of the form (zn)n≥0 = ({nz})n≥0. If z /∈ Q and z
has bounded partial quotients in its continued fraction expansion (see Section 2),
then (zn) has low-discrepancy ([Nie92], Theorem 3.3). By a symmtrized Kro-
necker sequence we simply mean a sequence indexed over Z of the form ({nz})n∈Z

with ordering

0, {z} , {−z} , {2z} , {−2z} , . . .

1If the reader is not familiar with the Definition of van der Coruput sequences, he may consult
[Nie92], Section 3.1.
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Note that it is still open, whether for S ≥ 2 an LS-sequence is a reordering
of some other well-known low-discprancy sequence such as a digital-sequence or
if the LS-construction really yields a new class of examples.

Our approach does not only give a significantly shorter proof of low-discrepancy
of LS-sequences for L = 1 but also improves the known discrepancy bounds
by I a c ó and Z i e g l e r in this case.

��������� 1.8� For S = 1 the discrepancy of the LS-sequence (ξn)n∈N is
bounded by

DN (ξn) ≤ 3

N
+

(
1

log(α)
+

L

log(L+ 1)

)
log(N)

N
, where α = (1 +

√
5)/2.

Corollary 1.8 indeed improves the discrepancy bounds for LS-sequences given
in Theorem 1.6 in the specific case S = 1. Both results yield inequalities of
the type

DN (ξn) ≤ γ

N
+
δ log(N)

N
For instance, if L = S = 1 then Corollary 1.8 implies γ = 3 and δ = 2.776 while
according to Theorem 1.6 the discrepancy can be bounded by γ = 3.447 and
δ = 3.01. The difference between the two results gets the more prominent the
larger L is: If L = 10 and S = 1 we get γ = 3 and δ = 5.51 while Theorem 1.6
only implies γ = 22.87 and δ = 9.03.2

2. Proof of the main results

Continued fractions. Recall that every irrational number z has a uniquely
determined infinite continued fraction expansion

z = a0 + 1/
(
a1 + 1/(a2 + . . .)

)
=: [a0; a1; a2; . . .],

where the ai are integers with a0 = �z� and ai ≥ 1 for all i ≥ 1. The sequence
of convergents (ri)i∈N of z is defined by

ri = [a0; a1; . . . ; ai].

The convergents ri = pi/qi with gcd(pi, qi) = 1 can also be calculated directly
by the recurrence relation:

p−1 = 0, p0 = 1, pi = aipi−1 + pi−2, i ≥ 0;

q−1 = 1, q0 = 0, qi = aiqi−1 + qi−2, i ≥ 0.

2We obtain different numerical values than in [IZ17]. We checked our result on different com-
puter algebra systems.
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������ 2.1� If S = 1, then β2 + Lβ − 1 = 0 or equivalently,

1

β
= L+ β holds.

Thus it follows that ai = L in the continued fraction expansion of β for all i =
1, 2, . . .

From now on the continued fraction expansion of β is studied and it is always
tacitly assumed, that the qi’s are the denominators of the convergents of β.
Although the proof of the following lemma is rather obvious we write it down
here explictly because our proof of the main theorem is based on this arithmetic
observation.

����� 2.2� Let n ∈ N0. If S = 1, then we have

(i) β2n+1 + q2n = q2n+1β.

(ii) β2n − q2n−1 = −q2nβ.

P r o o f. We prove both claims by induction.

(i) The identity is trivial for n = 0. So we come to the induction step

β2n+1 + q2n = β2β2n−1 + q2n
(
β2 + Lβ

)
= β2

(
β2n−1 + q2n

)
+ Lq2nβ

= β2 (q2n−1β − q2n−2 + q2n) + Lq2nβ

= β2 (q2n−1β + Lq2n−1) + Lq2nβ

= q2n−1β(β
2 + Lβ) + Lq2nβ

= q2n+1β.

(ii) The proof works analogously as in (i). We have β2 + 1 = −Lβ and

β2n − q2n−1 = β2β2(n−1) − q2n−1

(
β2 + Lβ

)
= β2

(
β2(n−1) − q2n−1

)− Lq2n−1β

= β2 (−q2n−2β + q2n−3 − q2n−1)− Lq2n−1β

= β2 (−q2n−2β − Lq2n−2)− Lq2n−1β

= −q2n−2β
(
β2 + Lβ

)− Lq2n−1β

= −q2nβ. �
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��
�� 2.3� Consider the Kakutani-Fibonacci sequence from Example 1.4.
If we denote by (fn)n≥0 the Fibonacci sequence, i.e., the sequence inductively
defined by

f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2,

we have that qi = fi for all i = 1, 2, . . .

If S = 1, then we can furthermore deduce from Definition 1.3 that tn+1 =
tn + Lln and that qn−1 = ln. Starting from ξ1 we split the LS-sequence into
consecutive blocks where the first block B1 is of length 1 and the n-th block Bn

for n ≥ 2 is of length Lln = Lqn−1 = tn − tn−1. We now study the blocks Bn,

Bn = ψ
(n)
1,0 (ξ1), . . . , ψ

(n)
1,0 (ξln−1

), . . . , ψ
(n)
L,0(ξ1), . . . , ψ

(n)
L,0(ξln−1

)

= ξ1 + βn−1, . . . , ξln−1
+ βn−1, . . . , ξ1 + Lβn−1, . . . , ξln−1

+ Lβn−1.

����� 2.4� Let n ∈ N.

(i) If n = 2k + 1 is odd, then Bn considered as a set consists of the L · q2k
elements {−q2k−1β} , {−(q2k−1 + 1)β} , . . . , {−(q2k+1 − 1)β} (respectively,
of the element 0 if n = 1).

(ii) If n = 2k is even, then Bn considered as a set consists of the L · q2k−1

elements {(q2k−2 + 1)β} , {(q2k−2 + 2)β} , . . . , {q2kβ}.
Before going into the rather technical details of the proof, let us explain

its idea for the example of the Kakutani-Fibonacci sequence (L = S = 1).
This sequence of points is given by

0︸︷︷︸
B0

, β︸︷︷︸
B1

, β2︸︷︷︸
B2

, β3, β + β3︸ ︷︷ ︸
B3

, β4, β + β4, β2 + β4︸ ︷︷ ︸
B4

, . . .

Using β + β2 = 1 this can be easily re-written as

0︸︷︷︸
B0

, β︸︷︷︸
B1

, 1− β︸ ︷︷ ︸
B2

, 2β − 1, 3β − 1︸ ︷︷ ︸
B3

, 2− 3β, 2− 2β, 3− 4β︸ ︷︷ ︸
B4

, . . .

P r o o f. The two assertions are proved simultaneously by induction on k. For
n = 1, 2 the claim is obvious from definition, since ξ1 = 0 and ξ2=β, . . . , ξL=Lβ.

Let k ≥ 2 and n = 2k + 1 be odd. If we denote by ≡ equivalence modulo 1
we have for m ∈ {0, . . . , ln−1} by Lemma 2.2 and induction hypothesis

ξm + jβ2k+1−1 ≡ ξm − jq2kβ ≡ (r − jq2k)β

with − q2k−1 ≤ r ≤ q2k and 1 ≤ j ≤ L.

−q2k−1 + 1− Lq2k ≤ r − jq2k ≤ q2k − q2k ⇔ −(q2k+1 − 1) ≤ r − jq2k ≤ 0.
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Since the sequence is injective, the claim follows for odd n. So let n = 2k + 2
be even. Then we use again Lemma 2.2 and induction hypothesis to derive

ξm + jβ2k+2−1 ≡ ξm + jq2k+1β ≡ (r + jq2k+1)β,

with − q2k−1 + 1 ≤ r ≤ q2k and 1 ≤ j ≤ L.

This completes the induction since

−q2k−1 + 1 + q2k+1 ≤ r + jq2k+1 ≤ q2k + Lq2k+1 ⇔ 1 ≤ r + jq2k+1 ≤ q2k+2.

�

P r o o f o f T h e o r e m 1.7. If S = 1 the LS-sequence is indeed a reordering of
the symmetrized Kronecker sequence by Lemma 2.4. So let S ≥ 2 and L ≥ S.
Then β is irrational and the relation

β2 =
1− Lβ

S
. (1)

holds. Hence the LS-sequence cannot be a reordering of a van der Corput se-
quence (which consists only of rational number).

Now assume that the LS-sequence is the reordering of a (possibly symmetrized)
Kronecker sequence {nα} for some α ∈ R. Since α itself has to be an element of
the LS-sequence, there exists an n ∈ N such that α can be uniquely written in
the form

α =

n∑
k=1

αkβ
k

with αk ∈ {0, . . . , L} for k = 1, . . . , n and αn �= 0. By (1) we have the equal-
ity βk = xkβ + yk with xk, yk ∈ Q and Skxk, S

kyk ∈ Z. Thus, α itself can be
rewritten as α = xαβ + yα with xα, yα ∈ Q and Snxα, S

nyα ∈ Z.
However, βn+1, which is an element of the LS-sequence, cannot be an element
of {nα}n since βn+1 = xn+1β + yn+1, where at least one of xn+1 and yn+1 has
denominator Sn+1. This is a contradiction. �

A main advantage of the approach via symmetrized Kronecker sequence is
that it yields a possibility to calculate improved discrepancy bounds, namely
Corollary 1.8.

P r o o f. (Proof of Corollary 1.8) We imitate the proofs in [Nie92], Theorem 3.3
and [KN74], Theorem 3.4 respectively and leave away here the technical details
that are explained therein very nicely: The number N can be represented in the
form

N =

l(N)∑
i=0

ciqi,
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where l(N) is the unique non-negative integer with ql(N) ≤ N < ql(N)+1, and
where the ci are integers with 0 ≤ ci ≤ L. Let LSN denote the set consisting
of the first N numbers of the LS-sequence. We decompose LSN into blocks
of consecutive terms, namely ci blocks of length qi for all 0 ≤ i ≤ l(N). Consider
a block of length qi and denote the corresponding point set by Ai. If i is odd,
Ai consists of the fractional parts {nz} with n = ni, ni + 1, . . . , ni + qi − 1
according to Lemma 2.4. As shown in the proof of [Nie92], Theorem 3.3., this
point set has discrepancy

Dqi(Ai) <
1

qi−1
+

1

qi
.

If i is even, Ai consists of the fractional parts {−nz} with again

n = ni, ni + 1, . . . , ni + qi − 1 by Lemma 2.4.

Since z and −z have the same continued fraction expansion up to signs, we
also have

Dqi(Ai) <
1

qi−1
+

1

qi
.

Analogous calculations as in [KN74] then yield the assertion. �

Asymptotically we deduce the following behaviour, again improving the more
general result of [IZ17] in the special case S = 1.

��������� 2.5� If S = 1, then we obtain

lim
N→∞

NDN (ξn)

logN
∼ L

log(L)
as L→ ∞.

Finally, we would like to point out the fact that it follows immediately from
our approach that the Kakutani-Fibonacci sequence is the reordering of an orbit
of an ergodic interval exchange transformation. In [CIV14], it was shown that a
much more complicated interval exchange transformation is necessary in order
to get the original ordering given in Definition 1.3.

��������� 2.6� For L = 1, the LS-sequence is always a reordering of an orbit
of an ergodic interval exchange transformation.

P r o o f. The map Rα : x �→ x + α (mod 1), the rotation of the circle by α, is
ergodic for α /∈ Q, see, e.g., [EW11], Example 2.2. Moreover, it is an interval
exchange transformation, compare e.g., [Via06]. �
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[Vol11] VOLČIČ, A.: A generalization of Kakutani’s splitting procedure, Ann. Mat. Pura
Appl. (4) 190 (2011), no. 1, 45–54.

Received December 4, 2017
Accepted January 23, 2018

Christian Weiß
Hochschule Ruhr West
Duisburger Str. 100

D-45479 Mülheim an der Ruhr
GERMANY

E-mail : christian.weiss@hs-ruhrwest.de

92


	1. Introduction
	2. Proof of the main results
	REFERENCES

