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ABSTRACT. We study sets of bounded remainder for the billiard on the unit
square. In particular, we note that every convex set S whose boundary is twice
continuously differentiable with positive curvature at every point, is a bounded
remainder set for almost all starting angles « and every starting point x. We show
that this assertion for a large class of sets does not hold for all irrational starting
angles a.

Communicated by Michael Drmota

1. Introduction and statement of results

In this paper we will be concerned with bounded remainder sets for the two-
dimensional billiard on the unit-square 1% = [0, 1)

DEFINITION 1. Let x = (z1,22) € I? and let a € R\Q. We say that the
function Y : [0,00) — I? defined by

l‘1+t‘

Y®:<ZH 2

where [|z|| := min,ez |z —al, is the two-dimensional billiard with starting slope «
and starting point x.

t
,zH“é“H) 0<t< oo, (1)
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It is easily checked that this definition indeed coincides with our image of a
real billiard-path in the unit square.

slope|«a

FiGcure 1.

DEFINITION 2. Let S C I? be an arbitrary measurable subset of the unit
square with Lebesgue measure A(S). We say that S is a bounded remainder
set for the two-dimensional billiard with starting slope a and starting point

x=(z1,x2) € I? if the distribution error
T

A¥(S.a.x) = [ Xs(V(0) dt - TAS) @)
0

is uniformly bounded for all 7" > 0. Here, X5 denotes the characteristic function

for the set S.

Distribution properties for continuous motions in an s-dimensional unit cube
were studied, for example, by Drmota in [3] (see also [4] or [7]) and quite
recently by Beck [1]. Beck ([1], [2]), especially studied continuous irrational
rotations and billiard paths. For the two-dimensional billiard path, for example,
he showed the following surprising result:

THEOREM (Beck). Let S C I? be an arbitrary Lebesque measurable set in the
unit square with positive measure. Then for every ¢ > 0, almost all « > 0 and
every starting point x = (11, x2) € I? we have

AY(S,a,x) =0 ((log T)3+€). (3)

As pointed out by Beck, the poly-logarithmic error term is shockingly small
compared to the linear term T'A\(.S). Moreover, it holds for all measurable sets S.
It is thus natural to ask if imposing certain regularity conditions on S could give
an even lower bound on the error term.
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We demonstrate in the following that the estimate of Beck indeed can be
significantly improved for a large collection of sets S. We show:

THEOREM 1.

a) For almost all « > 0 and every x € I?, every polygon S C I? with no
edge of slope o or —av is a bounded remainder set for the two-dimensional
billiard with starting slope o and starting point x.

b) For almost all a« > 0 and every x = (x1,x2) € I?, every conver set S C I*
whose boundary 05 is a twice continuously differentiable curve with positive
curvature at every point is a bounded remainder set for the two-dimensional
billiard with starting slope o and starting point x.

We will see in the proofs of these results that this Theorem easily follows
from an analogous result shown in [5] for the continuous irrational rotation
X(t) := ({1 +t},{z2 + at})i>0, and by the “unfolding-technique” suggested by
Beck in [2]. It is obvious that the results given in Theorem [Il do not hold for
a rational slope . However, one could ask whether the results can be improved
first by omitting the condition on the slopes of the edges of the polygon S
in part a) of the Theorem and, second, whether both results maybe are valid
even for all irrational slopes a. We will give an easy argument that indeed the
condition on the slopes of the edges cannot be omitted in general. Moreover,
we will prove - and this will be the main effort in this paper - that the results
of Theorem 1a and 1b in general do not hold for all irrational a.

Le., we will show:
THEOREM 2.

a) For every a > 0 there is a polygon S with an edge of slope o or —« such
that S is not a bounded remainder set for the billiard with starting-slope o
and for any starting point x.

b) For every m € [0,1)? there are uncountably many radii v, dense in an
interval of positive length, such that there is a slope o and a starting point x
such that the disk with midpoint m and radius v is not a set of bounded
remainder with respect to the billiard with starting slope o and starting
point x.

In Chapter 2 we prove Theorem 1 and Theorem 2a. In Chapter 3 we carry
out the main work, namely the proof of Theorem 2b.
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2. Proofs of Theorem 1 and of Theorem 2a

The proofs of these two results can be traced back to the results given in [3]
via the technique of unfolding.

As was pointed out in detail, for example, by Beck in [2] the technique of
“unfolding” a billiard path (see Figure 2)) shows that the problem of uniformity

FiGURE 2.

of a billiard path in the unit square with respect to a given test set S is equivalent
to the problem of uniformity of the corresponding continuous rotation in the 2 x2
square, where each one of the four unit-subsquares contains a reflected copy of the
given test set (see S1, 52,53, Sy in Figure[)) Of course, this again can be reduced
to the problem of studying continuous irrational rotation in [0, 1)? with respect
to a factor 1/2 reduced versions of S1, .S, S5, Sy.

So in all the following, when studying the distribution error AY.(S,a,x)
for the two-dimensional billiard this task can be traced back to the investiga-
tion of the distribution error AX (S, a,x) for the continuous irrational rotation
where S consists of four mirrored and by a factor 1/2 reduced copies of S lying
symmetrical to (1/2,1/2).
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o | &

1

zfs

FiGuRrE 3.

Proof of Theorem 1. Theorem 1 follows immediately from the above con-
siderations on the unfolding technique and from Theorem 1 and Theorem 2 in [5].
O

Proof of Theorem 2a. Let o > 0 be given. Consider first a triangle S (see
Figure H)) with corners in (a,1) , (1,1 — a«) , (1,1), where a is such that
0 < ac < 1 and such that a # X{ka} for all k € N.

a

\
1—aa

FIiGURE 4.
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So ome side of S has slope —a. Unfolding leads to the investigation of the
continuous irrational rotation with slope o with respect to the parallelogram S
(see Figure [B]) with corners in

1 a 1 14+ aa 1+a 1 1 1—awa
272)7\27 2 \2 272/ 7\27 2 ’

aa -

FiGURE 5.

Note that two sides of S have slope a, the other two have slope —a. Its vertical

diagonal [A, B] has a length of aa # {ka} for all k € N. We show that for no

starting point x the set S is of bounded remainder for the irrational continuous

rotation with slope «. Hence the set S is not of bounded remainder for the

billiard with starting slope « (and any starting point x).

Indeed, it is easy to see that for this set S we have

L (7]

[ xstith gathat =3 X (frah)| < 1.

0 n=1

It was shown by Kesten in [6] that
[T]

> Xiap({na}) — ac - [T]
n=1
is unbounded since B — A=a« # {ka} for all keN.

76



SETS OF BOUNDED REMAINDER FOR THE BILLIARD ON A SQUARE

Hence (note that A(S)=aa - b)
T

/XS({t}, {at})dt —T - \(S)

0
is unbounded. O

3. Proof of Theorem 2b

The proof of Theorem 2b will need the most work. We start with some aux-
iliary results. Especially we will have to deal with functions of the form

1 2m—1 A
gm (@) == o \/1—(1—E—5€)2 (4)
k=0
for z € [0, %], where m is a given positive integer. The function g, is illustrated
in Figure [6
gm ()1

1 1 .
2m m x
FI1GURE 6.

Let now m be fixed, and h,, (z) := gm(x) — gm(0) . Tt is easy to see that

hn(0) = hon () = 0, e

is arbitrarily often differentiable on (0,-L), continuous on [0, -], symmetric
around 7= and strictly convex on [0, =].
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Further we have

LEMMA 1.

a) There exist ¢/, ¢ with 0 < ¢/ < " such that for all m large enough we have

1 1 1
/ /!
c- m/2 hM<%) < : me (5)
b) There exists ¢’ > 0 such that
1
hp(z) > "=z (6)
m
for all x € [0, 7.

Proof. This is shown by some tedious but elementary analysis. We do not give
all details but just give two hints:

e To prepare part a) note that
hm(z) = gm(z) — gm(0)

- i (i
- Lyrm, <\/1(1§x)2 f 1—(17%)2
+ %1—(1—%—@2 . \/1—(1—2m;n1—k>2>

=: ﬁ Yoo Wi (k, )

and note that simple calculation shows that for £ > 0 there are absolute con-
stants ¢}, ch, > 0 such that

, 1 S I 1
“1 m'? max(k,1)°2  — Wm = @ m'/2 max(k, 1)’

always.

3=
|
8
~—
o
|
—_
|
—
—
|
3=
~—
o
~_—

*2m

e To show part b, note that for z small, only the first summand of h,,, i.e., the
summand for k=0,

1 1
S V1-(1-22 ~ —a
m m

is of relevance. g

78



SETS OF BOUNDED REMAINDER FOR THE BILLIARD ON A SQUARE

LEMMA 2.

a) There exists ¢; > 0 such that
1
Ha@)| < e (7)
9

forall x € [m, Tom | and all m large enough.

FEspecially, it holds that
h! > -0 — 8
. m(x) = 1 \/m ( )
’ m] .
b) There exists co > 0 such that for all m large enough we have

for all x € [0

hl.(x) > bc
for all x € (0, 02%).

(Here ¢y is the constant from part a).)

ﬁ (9)

Proof. This follows immediately from Lemma [ and the convexity of h,,. O

Let m large enough be fixed. Moreover, in the following let a,b, ¢ be given
reals with

1
0<a<b<e< —,
and m

Gm(z) = gm (:v) + gm <(m + a) mod %)
+gm ((x +b) mod %) + m ((x +¢) mod %) .

Then we have:

LEMMA 3. There are c3,cq > 0 such that for all m large enough and all
a,b,c as above there is an xg € {0,a,b,c} such that G, is strictly increasing
1

on [xg, o+ c4 - --] and

1
Gm (xo —+cq4 - > Gm<l‘0) > C3- —3/2, (10)
m

3m
1 1
Gm | ko +cq- To + co - 3m > CS.W’ (11)
G <$0+C4 > (

2 1
Ty + Co- 3—> > Cg'm. (12)
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Proof. At least one of the following relations holds:

c<— or b<e——, or a<b——, or a>—.
5m 5m’ 5m’ 5m

Assume for example that ¢ < % holds (the other cases are treated quite anal-
ogously). Then set zo = 0. Let ¢4 := min(cg, £5) where ¢; is like in Lemma PIb).
Then for any x € [0, 04%) it holds that

1 1 1 9
(a+z) mod —, and (b+z) mod —, and (c+x)mod — are all in [0, —)
m m m 10m
1

Hence by Lemma [2la) we have that g/, at these places is at least —c; - T

By Lemma 2Ib) for z € [0, cs==] we have g/, (z) > 5c¢; - \/% and hence G, (z) >
201\/% for all those z.
From this the assertions of Lemma [B] immediately follow. O

LEMMA 4. For all m large enough there is a sub-interval A,, of [0, %] of length

at least %4 . % such that either

2m®/? 2m?/2

2
Gm(x)>2/\/1(1y)2dy+ B . (13)

0
or

2m>/2

2
c3 c3
Gm(x)<2/\/1(1y)2dymzw (14)
0

holds for all x € A,,.
Proof. This follow immediately from Lemma [l O

Proof of Theorem 2 b. For the proof we proceed in analogy to the proof
of Theorem 1.7b in [5], where the corresponding result was shown for the con-
tinuous irrational rotation, and in the following we sometimes refer to this proof.

Fix an irrational o€ (%, %) with continued fraction expansion «=[0; a1, as, . . . |
and convergents 2= satisfying a;1 > q;? and p; even, for infinitely many [. There
exist uncountably many such as. Let S be a disk with diameter d := 2a/v/1 + o2.
(Note that the set of o with the above properties is dense in (%, i), hence the

set of diameters d is dense in (\/%, \/%_7))

80



SETS OF BOUNDED REMAINDER FOR THE BILLIARD ON A SQUARE

FiGURE 7.

Studying the billiard path with respect to S means to study the continu-
ous rotation with respect to four copies of S with diameter a/v/1+ a2 each
(see Figure [1))

For such « and one copy of such disks it was shown in Theorem 1.7b in [5] that
the continuous rotation is not of bounded remainder for all starting points x.
In the proof of this Theorem the result was shown by studying the function g,,
as defined in this current paper at the beginning of Section 3 (in [5] our g, is
denoted by G,,), and it was shown that the validity of the result of Theorem 1.7 b
in [5] is due to the fact that for every m there exists a subinterval A,, C [0, =]

) 2m
of length at least % such that either
2

1
an(@) > 5 [VIZT—0F dy+ o =5 5 (15)
2 m*? 4

m>/
0
or 2
1 c T c
_ J1 — _ 2 - =
gm('r) < 2/ 1 (1 y) dy m3/2 4 m3/2 (16)
0

holds for an absolute constant ¢ > 0 and all z € A,,.

By following the proof of Theorem 1.7 b in [5] it becomes obvious that studying
now four copies of disks instead of one copy means to study

gm (w) + gm ((:Jc + a)mod%) + 9m ((.’Jc + b)mod%) + 9m ((.’Jc + c)mod%)

for some a, b, c.
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This means in particular to analyse the corresponding function G,, as it has
been done in Lemma Bl and Lemma [ of the current paper. In Lemma @l it was
shown that for G, an analogous property (independent of the choices for a,b,
and c) holds as stated above for g,,.
Again by following the proof of Theorem 1.7b in [5] it is obvious that from
this property for G, (LemmaM]) the result of our Theorem 2Ib follows.
O
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