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ON M.B. LEVIN’S PROOFS

FOR THE EXACT LOWER DISCREPANCY BOUNDS

OF SPECIAL SEQUENCES AND POINT SETS

(A SURVEY)

Lisa Kaltenböck — Wolfgang Stockinger
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ABSTRACT. The goal of this overview article is to give a tangible presentation
of the breakthrough works in discrepancy theory [3, 5] by M. B. Levin. These
works provide proofs for the exact lower discrepancy bounds of Halton’s sequence

and a certain class of (t, s)-sequences. Our survey aims at highlighting the major
ideas of the proofs and we discuss further implications of the employed methods.
Moreover, we derive extensions of Levin’s results.

Communicated by Robert Tichy

1. Introduction and statement of main results

In [3] and [5] M. B. L e v i n proved optimal lower discrepancy bounds for cer-
tain shifted (t,m, s)-nets and for the s-dimensional Halton sequence. The main
ideas of these proofs are also basis for later, even deeper works of L e v i n on
this topic, see [4, 6]. However, these papers will not be discussed in our survey.
In [3] and [5] L e v i n showed the subsequent Theorems 1 and 2, which we will
state below in a simplified version. We start with fixing the notation for basic
quantities and concepts, which will be needed for the formulation of L e v i n’s
results and of our extensions.
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Let (xn)n∈N be an infinite sequence in the s-dimensional unit cube [0, 1)s,

y =
(
y(1), . . . , y(s)

)
,

and

[0,y) =
[
0, y(1)

)× · · · × [
0, y(s)

) ⊆ [0, 1)s.

We call Δ
(·, (xn)

N
n=1

)
: [0, 1]s → R,

Δ
(
y, (xn)

N
n=1

)
=

N∑
n=1

(
χ[0,y)(xn)− y(1) · · · y(s)),

the discrepancy function of the sequence (xn)n∈N. We define the star-discrepancy
of an N -point set (xn)

N
n=1 as

D∗((xn)
N
n=1

)
= sup

y∈[0,1)s

∣∣∣∣ 1NΔ(y, (xn)
N
n=1)

∣∣∣∣ .
Further, we need the definition of a (t,m, s)-net in base b introduced by H. N i e -
d e r r e i t e r [2] and the so-called d-admissibility property of nets.

���������� 1� For integers b ≥ 2, s ≥ 1, m and t, with 0 ≤ t ≤ m, a (t,m, s)-
net in base b is defined as a set of points P = {x0, . . . ,xbm−1} in [0, 1)s, which
satisfies the condition that every interval with volume b−m+t of the form

J =

s∏
i=1

[ ai
bdi

,
ai + 1

bdi

)
with di∈N0, ai∈{0, 1, . . . , bdi−1}, for i=1, . . . , s,

contains exactly bt points of P . We will call these intervals J elementary inter-
vals.

���������� 2� For x =
∑

i≥1
xi

bi , where xi ∈ {0, 1, . . . , b − 1} and m ∈ N, the
truncation is defined as

[x]m =

m∑
i=1

xi

bi
.

For x =
(
x(1), . . . , x(s)

)
the truncation is defined as [x]m =

(
[x(1)]m, . . . , [x(s)]m

)
.

Moreover, we define [x]0 := 0.

Keep in mind that for an arbitrary number x ∈ R, [x] denotes the integer
part of x. For the next definition recall the concept of the digital shift.
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For a point x =
∑

i≥1
xi

bi and a shift σ =
∑

i≥1
σi

bi we have that

x⊕ σ :=
∑
i≥1

yi
bi
, where yi ≡ xi + σi mod b

and analogously,

x	 σ :=
∑
i≥1

yi
bi
, where yi ≡ xi − σi mod b.

For x =
(
x(1), . . . , x(s)

)
and σ =

(
σ(1), . . . , σ(s)

)
the b-adic digitally shifted point

is defined by x⊕σ =
(
x(1)⊕σ(1), . . . , x(s)⊕σ(s)

)
. Analogously, we define x	σ.

���������� 3� For x =
∑

i≥1
xi

bi , where xi = 0 for i = 1, . . . , k and xk+1 
= 0,
the absolute valuation of x is defined as

‖x‖b = 1

bk+1
.

For x = (x(1), . . . , x(s)) the absolute valuation is defined as ‖x‖b :=
∏s

j=1 ‖x(j)‖b.

With this definition we can introduce point sets with a special property which
is essential for the further considerations of this chapter.

���������� 4� For an integer d, we say that a point set P = {x0, . . . ,xbm−1}
in [0, 1)s is d-admissible in base b if

min
0≤k<n<bm

‖xn 	 xk‖b > 1

bm+d
.

We remind the definition of the Halton sequence in bases b1, . . . , bs, where
s ≥ 1. Throughout this survey all occurring bases b1, . . . , bs, are assumed to be
pairwise coprime integers.

���������� 5� Let b1, . . . , bs, bi ≥ 2 (i = 1, . . . , s), for some dimension s ≥ 1,
be integers. Then the s-dimensional Halton sequence in bases b1, . . . , bs, denoted
by

(
Hs(n)

)
n∈N0

, is defined as

Hs(n) :=
(
φb1(n), . . . , φbs(n)

)
, n = 0, 1, . . . ,

where φbi denotes the radical inverse function in base bi, i.e, the function φbi :
N0 → [0, 1), defined as

φbi(n) :=

∞∑
j=0

njb
−j−1
i ,

where n = n0 + n1bi + n2b
2
i + · · · , with n0, n1, n2, . . . ∈ {0, 1, . . . , bi − 1}.
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It is well known in discrepancy theory that the Halton sequence (requiring
that the underlying bases are pairwise coprime) is a low discrepancy sequence,

i.e., the star-discrepancy is of order O( (logN)s

N

)
(see, e.g., [1]). Succeeding in

showing that the discrepancy of the Halton sequence satisfies D∗((Hs(n))
N
n=1

) ≥
cs

(logN)s

N , for infinitely many N , with a constant cs > 0, would prove that this
order is exact.

For (t,m, s)-nets in base b, denoted by P , we know that their discrepancy al-

ways satisfiesD∗(P) ≤ cs,bb
t (logN)s−1

N . We will show that the order O( (logN)s−1

N

)
is exact for certain (t,m, s)-nets.

Now, we can state Levin’s main results from [3] and [5] (in a simplified form).

	
����� 1� Let s ≥ 2, d ≥ 1,m ≥ 9(d + t)(s − 1)2 and let (xn)0≤n<bm be a
d-admissible (t,m, s)-net in base b. Then, we can provide an explicitly given w
such that

bmD∗((xn ⊕w)0≤n<bm
) ≥ (4(d+ t)(s− 1)2)−s+1

bd
ms−1.

In particular, we have

D∗((xn ⊕w)0≤n<N

) ≥ cs,d
(logN)s−1

N
,

with a constant cs,d > 0 and N = bm.

	
����� 2� Put B = b1 · · · bs, s ≥ 2 and m0 = �2B log2B
 + 2, then the
estimate for the star-discrepancy of the Halton sequence

sup
1≤N≤2mm0

ND∗((Hs(n))
N
n=1

) ≥ ms(8B)−1,

is valid for m ≥ B. In particular, there exists some constant cs > 0, such that

D∗((Hs(n))
N
n=1

) ≥ cs
(logN)s

N
, for infinitely many N ∈ N.

The implied constant cs also depends on the bases but not on N .

The aim of this paper is two-fold. First, we will give an easier and simpler
access to the ideas of L e v i n. To this end, we are eager to give a clear and
illustrative re-proof of Theorems 1 and 2. We use absolutely the same ideas as
L e v i n, but focus on a clearer presentation. To achieve this goal, we restrict
the re-proof of Theorem 1 to the two-dimensional case and carry out the steps
in detail. For this case of course, the exact lower discrepancy bound follows
(for an arbitrary w) by the general lower bound for the discrepancy of two-
dimensional point sets by W. M. S c hm i d t [7]. For simplicity we will also
restrict ourselves to base b = 2. Moreover, we focus on the optimal quality
parameter t = 0 and for ease of presentation we formulate and prove the result
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for m ≡ 0 mod 4. We also state the result without the shift and require a certain
condition on x0 instead. (The ideas for the proof in the general case are the
same as in this special version.) This gives Theorem 3:

	
����� 3� Let (xn)0≤n<2m be a (0,m, 2)-net in the base 2 with m ≥ 4,

m ≡ 0 mod 4 and x0 = γ = (γ(1), γ(2)),

γ(1) =
1

22
+

1

24
+ · · ·+ 1

2m/2
,

γ(2) =
1

2m/2+2
+

1

2m/2+4
+ · · ·+ 1

2m
.

Then it holds for the interval Jγ = [0, γ(1))× [0, γ(2)) that

1

N
Δ
(
γ, (xn)0≤n<2m

) ≤ −1

4

1

2m+2
m,

and consequently,

D∗((xn)0≤n<N

) ≥ 1

16 log 2

logN

N
, with N = 2m.

The second aim is to give, in a certain sense, a quantitative extension of The-
orems 1 and 2. We will show:

	
����� 4� Let m ≥ 2ss(s− 1)s. Then, there is a set Γ ⊆ [0, 1)s, s ≥ 2, with
the following properties:

• For all x ∈ [0, 1)s there exists a γ ∈ Γ with

‖x− γ‖ < b
√
s

1

b
m

2(s−1)s
.

Here, ‖ · ‖ denotes the euclidean norm.

• If P = {x0, . . . ,xbm−1} is a (0,m, s)-net in base b, and if xi ∈ Γ for some
i ∈ {0, . . . , bm − 1}, then, with N = bm,

D∗(P) ≥ (b− 1)s(2s− 3)s−1

bs(4s2(s− 1)2 log b)s−1

(logN)s−1

N
.

	
����� 5� There are constants c1 and c2 > 0, such that for infinitely many
N there exists a set ΛN ⊆ [0, 1)2 with the following properties:

• We have λ2(ΛN ) ≥ c1, where λ2 denotes the 2-dimensional Lebesgue mea-
sure.

• For all x ∈ ΛN there exists a y ∈ [0, 1)2 with ‖x− y‖ <
√
8 1

N
1
14

and∣∣Δ(
y, (H2(n))

N
n=1

)∣∣ ≥ c2(logN)2.
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����� 1� An analogous result can be obtained for arbitrary dimensions.
For sake of simplicity our considerations will be restricted to the two-dimensional
case. The basic ideas become better visible in this case and can be adopted
to higher dimensions in a straightforward manner.

The remainder of this paper is organised as follows: In Chapter 2, we will
discuss the d-admissibility property in more detail. Of course, the proof of The-
orem 3 will be the major part of this chapter. We relax some of the condi-
tions of Theorem 3 in Chapter 3 and derive a more general result (Theorem 4).
In Chapter 4, we will prove Theorem 2 in detail. Chapter 5 will be solely dedi-
cated to the proof of Theorem 5.

2. Remarks on admissibility of nets and
Re-proof of Theorem 3

Before stating the proof of Theorem 3, we discuss the d-admissibility prop-
erty for (0,m, s)-nets, since in this theorem we restrict ourselves to the quality
parameter t = 0.

����� 2.1� A point set P = {x0, . . . ,xbm−1} in [0, 1)s is s-admissible if
and only if P is a (0,m, s)-net in base b. Moreover, P cannot be d-admissible
for d < s.

P r o o f. Let P be a (0,m, s)-net in base b. First, we show that

1

bm+s−1
≥ min

0≤k<n<bm
‖xn 	 xk‖b,

by taking special elementary intervals into account. Since P is a (0,m, s)-net,
we know by definition that every elementary interval of order m in base b, i.e.,
every elementary interval with volume 1

bm , contains exactly one point of P .
Therefore, this is also true for intervals of the form[

k

bm
,
k + 1

bm

)
× [0, 1)s−1, k ∈ {0, . . . , bm − 1}.

Now let x = (x(1), . . . , x(s)) be the unique point of P for which it holds that
x(1) ∈ [

0, 1
bm

)
. Moreover, let y = (y(1), . . . , y(s)) be the point of P such that

y(1) ∈ [
b−1
bm , b

bm

)
. This is equivalent to

0 ≤ x(1) <
1

bm
,

b− 1

bm
≤ y(1) <

1

bm−1
.
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Therefore, we know that x(1) and y(1) can be written as

x(1) =
α1

bm+1
+

α2

bm+2
+ · · · ,

y(1) =
b− 1

bm
+

β1
bm+1

+
β2

bm+2
+ · · · ,

where αi, βi ∈ {0, 1, . . . , b − 1} for i ≥ 1. Thus, ‖y(1) 	 x(1)‖b = 1
bm . Moreover,

for x(i) and y(i), i = 2, . . . , s, it holds that ‖y(i)	x(i)‖b ≤ 1
b . Therefore, it follows,

that

‖y 	 x‖b ≤ 1

bm+s−1
.

If we can prove that min0≤k<n<bm ‖xn	xk‖b > 1
bm+s , then the first implication

of the assertion immediately follows. Suppose that there exist points

x =
(
x(1), . . . , x(s)

)
,x ∈ P and y =

(
y(1), . . . , y(s)

)
,y ∈ P

such that ‖y 	 x‖b ≤ 1
bm+s . Then, there exist integers l(1), . . . , l(s−1) such that

‖y(i) 	 x(i)‖b ≤ 1

bl(i)
, for i = 1, . . . , s− 1,

and
‖y(s) 	 x(s)‖b ≤ 1

bm+s−l(1)−...−l(s−1)
.

This implies that the first l(i) − 1 digits of the b-adic expansion of x(i) and y(i),
i = 1, . . . , s− 1 are identical. Also, the first m+ s− l(1) − · · · − l(s−1) − 1 digits
of the b-adic expansion of x(s) and y(s) are identical. Consequently, x and y are
contained in an elementary interval of volume 1

bm . This contradicts our assump-
tion that P is a (0,m, s)-net.

Let now P be an arbitrary bm-point set in [0, 1)s which is not a (0,m, s)-net.
Then there exists an elementary interval J1 ⊆ [0, 1)s of volume 1/bm which
contains no point of P or at least two points of P . In the second case it immedi-
ately follows (by the same considerations as above) that P is not s-admissible.
Consider now the first case: We can partition [0, 1)s into bm elementary inter-
vals Ji of the same shape as J1. Since J1 contains no point of P there exists
at least one i such that Ji contains at least two points, and this again contradicts
the s-admissibility. �


����� 2� Note, that it might happen that a (1,m, s)-net in base b is non-
admissible for any integer d. To see this, just take b copies of a (0,m−1, s)-net in
base b. This gives an example of a (1,m, s)-net in base b which is not d-admissible
for any d ∈ N.
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LISA KALTENBÖCK — WOLFGANG STOCKINGER

These preliminary considerations put us in the position to prove Theorem 3.
In Chapter 3 we give the proof for a more general result in the general case.
Note, that for (t,m, s)-nets with nonzero quality parameter the d-admissibility
condition has to be required additionally. The idea underlying the proof of the
theorem in the general case is exactly the same.

P r o o f o f T h e o r e m 3. Note that by Lemma 2.1 (xn)0≤n<2m is 2-admissible.
To begin with, we want to find a suitable partition of the interval Jγ . Let there-
fore r = (r1, r2) ∈ N2. For

r1 = 2j1 and r2 = m/2 + 2j2 with j1, j2 ∈ {1, . . . ,m/4}
it holds that

γ(1) =
∑
r1

1

2r1
and γ(2) =

∑
r2

1

2r2
.

Now define the set A which contains all combinations of the indices r1 and r2,
i.e.,

A =
{
(r1, r2)| r1 = 2j1, r2 = m/2 + 2j2, j1, j2 ∈ {1, . . . ,m/4}}.

The partition of Jγ is then given by

Jr,γ =

[[
γ(1)

]
r1−1

,
[
γ(1)

]
r1−1

+
1

2r1

)
×

[[
γ(2)

]
r2−1

,
[
γ(2)

]
r2−1

+
1

2r2

)
,

for (r1, r2) ∈ A. Furthermore, let

A1 = {r ∈ A| r1 + r2 ≤ m},
A2 = {r ∈ A| r1 + r2 = m+ 1},
A3 = {r ∈ A| r1 + r2 ≥ m+ 2},

such that A = A1 ∪ A2 ∪ A3. The intervals Jr,γ are elementary intervals in
base 2 with volume 1

2r1+r2
, i.e., of order r1 + r2. Moreover, all Jr,γ are disjoint

and therefore, we obtain with

A(r) :=

2m−1∑
n=0

χ
Jr,γ

(xn),

1

N
Δ
(
γ, (xn)0≤n<2m

)
=

∑
r∈A

(A(r)

2m
− λ2(Jr,γ)

)
=

∑
r∈A1

(A(r)

2m
− λ2(Jr,γ)

)

+
∑
r∈A2

(A(r)

2m
− λ2(Jr,γ)

)
+

∑
r∈A3

(A(r)

2m
− λ2(Jr,γ)

)

=: Δ1(γ) + Δ2(γ) + Δ3(γ).
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Consider Δ1. Since (xn)0≤n<2m is a (0,m, 2)-net, it is fair with respect to all
elementary intervals of order ≤ m. For r ∈ A1 it holds that r1 + r2 ≤ m and
therefore

Δ1(γ) =
∑
r∈A1

A(r)

2m
− λ2(Jr,γ) = 0.

Consider Δ2. From the condition that r ∈ A2 ⊆ A we get that

r1 = 2j1 and r2 = m/2 + 2j2,

where j1, j2 ∈ {1, . . . ,m/4}. It follows that
r1 + r2 = m+ 2(j1 + j2 −m/4).

Since j1+j2−m/4 ∈ Z we know that 2(j1+j2−m/4) 
= 1 which is a contradiction
to the assumption that r1 + r2 = m + 1 for all r ∈ A2. Therefore, A2 = ∅ and
Δ2 = 0.

Consider Δ3. As a first step we want to show that Jr,γ with r1 + r2 ≥ m+ 2
cannot contain any point of (xn)0≤n<2m and we will do that by deriving a
contradiction.

Suppose there exists xk ∈ Jr,γ for some k < 2m and some r ∈ A3. Then we
know for the first coordinate[

γ(1)
]
r1−1

≤ x
(1)
k <

[
γ(1)

]
r1−1

+
1

2r1
which is equivalent to

1

22
+

1

24
+ · · ·+ 1

2r1−2
≤ x

(1)
k,1

2
+ · · ·+ x

(1)
k,r1−1

2r1−1
+

x
(1)
k,r1

2r1
+ · · ·

<
1

22
+

1

24
+ · · ·+ 1

2r1−2
+

1

2r1
.

Therefore, it has to hold that

x
(1)
k,2 = x

(1)
k,4 = · · · = x

(1)
k,r1−2 = 1 and x

(1)
k,1 = x

(1)
k,3 = · · · = x

(1)
k,r1−1 = 0.

An analogous procedure can be done for the second coordinate. Hence,[
γ(1)

]
r1−1

=
[
x
(1)
k

]
r1−1

and
[
γ(2)

]
r2−1

=
[
x
(2)
k

]
r2−1

. (2.1)

Combining (2.1) and the assumption that x0 = γ leads to[
(xk 	 x0)

(1)
]
r1−1

= 0 and
[
(xk 	 x0)

(2)
]
r2−1

= 0.

Thus, we get ‖x(i)
k 	 x

(i)
0 ‖2 ≤ 1

2ri
. Since r ∈ A3, i.e., r1 + r2 ≥ m+ 2, it follows

that
‖xk 	 x0‖2 ≤ 1

2r1+r2
≤ 1

2m+2
.

This is a contradiction to the assumption that (xn)0≤n<2m is a 2-admissible
(0,m, 2)-net in base 2.
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Hence, A(r) = 0 for all r ∈ A3 and

Δ3(γ) =
∑
r∈A3

(A(r)

2m
− λ2(Jr,γ)

)

= −
∑
r∈A3

1

2r1+r2
≤ −

∑
r∈A3

r1+r2=m+2

1

2m+2
= −|A4| 1

2m+2

with
A4 = {r ∈ A3| r1 + r2 = m+ 2}.

It is easy to see that
|A4| = m

4
for m ≥ 4 and m ≡ 0 mod 4,

and so we finally get

1

N
Δ
(
γ, (xn)0≤n<2m

)
= Δ3(γ) ≤ − 1

2m+2
|A4|

= −1

4

1

2m+2
m.

�

3. Proof of Theorem 4

The first aim of this section is to focus on the assumption of Theorem 3 that
there exists a point x0 ∈ P such that x0 = γ (of course the condition x0 = γ
can be replaced by xn = γ for any n ∈ {0, . . . , 2m − 1}). This restriction on the
point set is weakened by showing that there are many possible choices for γ such
that the proof of Theorem 3 can still be performed in an analogous way. In fact,
it turns out that γ only has to fulfill some simple properties as the following
lemma shows:

����� 3.1� Let (xn)0≤n<bm be a (0,m, s)-net in base b. Let

x0 ∈
s∏

j=1

[γ(j), γ(j) +
1

bmax(Rj)
),

where

γ(j) =
∑
r∈Rj

a
(j)
r

br
,

a
(j)
r ∈ {1, 2, . . . , b− 1} and Rj ⊆ {1, 2, . . . ,m} for j = 1, . . . , s. Here the Rj are

arbitrary, but for r = (r1, r2, ..., rs) ∈ R1×R2× ...×Rs, the following constraints
need to be satisfied:
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• |{r| m+ 1 ≤ ∑s
j=1 rj < m+ s}| ≤ ms−1

δ
,

• |{r| ∑s
j=1 rj = m+ α}| ≥ ms−1

β ,

for some constant β > 0, some integer α ≥ s and for δ > bα(bs−1−1)β
bs−1 . Then, it

holds for the interval Jγ =
∏s

j=1[0, γ
(j)) that

1

N
Δ
(
γ, (xn)0≤n<bm

) ≤ −ms−1

bm

(
− (b− 1)s

δ

bs−1 − 1

bs−1
+

(b− 1)s

β

1

bα

)
,

where (
− (b− 1)s

δ

bs−1 − 1

bs−1
+

(b− 1)s

β

1

bα

)
> 0.

P r o o f. Let A = {r| rj ∈ Rj , j = 1, . . . , s} be the set of indices which can be
split into three disjoint subsets

A1 = {r ∈ A|
s∑

j=1

rj ≤ m},

A2 = {r ∈ A| m+ 1 ≤
s∑

j=1

rj < m+ s},

A3 = {r ∈ A|
s∑

j=1

rj ≥ m+ s}.

Further let

A4 = {r|
s∑

j=1

rj = m+ α}.

A partition of the interval Jγ is given by the subintervals

Jr,γ,g =

s∏
j=1

[
[γ(j)]rj−1 +

gj
brj

, [γ(j)]rj−1 +
gj + 1

brj

)
,

where g = (g1, . . . , gs) with gj ∈ {0, 1, . . . , arj − 1}.
The intervals Jr,γ,g are disjoint elementary intervals of order

∑s
j=1 rj in base b.

We define

A(r, g) :=

bm−1∑
n=0

χ
Jr,γ,g

(xn).

Then, it is possible to split the estimation of the discrepancy function into three
parts corresponding to the sets A1, A2 and A3,
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1

N
Δ(γ, (xn)0≤n<bm) =

∑
r∈A1

g

(A(r, g)

bm
− λs(Jr,γ,g)

)

+
∑
r∈A2

g

(A(r, g)

bm
− λs(Jr,γ,g)

)

+
∑
r∈A3

g

(A(r, g)

bm
− λs(Jr,γ,g)

)

= Δ1 +Δ2 +Δ3.

It follows by the net property and the fact that Jr,γ,g are elementary intervals
that

Δ1 =
∑
r∈A1

g

(A(r, g)

bm
− λs(Jr,γ,g)

)
= 0.

Since Jr,γ,g, r ∈ A2, are elementary intervals of order greater or equal to m+1,
they either contain one point of the (0,m, s)-net or they are empty. Let us
consider these two cases:

(1) ∃ xk ∈ Jr,γ,g . Then it holds that

1

bm
− 1

bm+1
≤ A(r, g)

bm
−λs(Jr,γ,g) =

1

bm
− 1

b
∑

s
j=1 rj

≤ 1

bm
− 1

bm+s−1
.

(2) � xk ∈ Jr,γ,g . In this case it holds that

− 1

bm+1
≤ A(r, g)

bm
− λs(Jr,γ,g) = − 1

b
∑

s
j=1 rj

≤ − 1

bm+s−1
.

Then, by the assumptions on A2 we obtain the estimate

− 1

bm+1

ms−1

δ
(b− 1)s ≤ Δ2 ≤

(
1

bm
− 1

bm+s−1

)
ms−1

δ
(b− 1)s.

Now, consider Δ3. The first step is again to show that Jr,γ,g with r ∈ A3

and for all associated g, cannot contain any point of a (0,m, s)-net which has
an element x0 ∈ ∏s

j=1[γ
(j), γ(j) + 1

bmax(Rj ) ). The condition that x0 is contained

in this set, is equivalent to

[γ(j)]rj = [x
(j)
0 ]rj , for j = 1, . . . , s. (3.1)
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Suppose that there exists xk ∈Jr,γ,g for some k<bm, some r∈A3 and some g.
It then follows that

[γ(j)]rj−1 = [x
(j)
k ]rj−1, for j = 1, . . . , s.

Therefore,

‖xk 	 x0‖b ≤ 1

b
∑

s
j=1 rj

≤ 1

bm+s
.

This is a contradiction to the assumption that xk and x0 are elements of a
(0,m, s)-net in base b because from Lemma 2.1 we know that

min
x,y∈P

‖x	 y‖b = 1

bm+s−1
.

Hence, all Jr,γ,g, where r ∈ A3 are empty. Using the fact that |A4| ≥ ms−1

β , we

then get

Δ3 =
∑
r∈A3

g

(A(r, g)

bm
− λs(Jr,γ,g)

)

= −
∑
r∈A3

g

1

b
∑s

j=1 rj

≤ −
∑
r∈A4

g

1

bm+α

≤ −ms−1

β
(b− 1)s

1

bm+α
.

Finally, we get the estimate

1

N
Δ(γ, (xn)0≤n<bm) = Δ1 +Δ2 +Δ3

≤
(

1

bm
− 1

bm+s−1

)
ms−1

δ
(b− 1)s

− ms−1

β
(b− 1)s

1

bm+α

= −ms−1

bm

(
− (b− 1)s

δ

bs−1 − 1

bs−1
+

(b− 1)s

β

1

bα

)
< 0

for δ > bα(bs−1−1)β
bs−1 . �
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Subsequently, we now derive Theorem 4, which in some sense describes how
dense possible choices of γ are in [0, 1)s.

P r o o f o f T h e o r e m 4. Let Γ be defined as the set, which contains all points
of the form

γ =

(∑
r1

1

br1
, . . . ,

∑
rs

1

brs

)
,

where ri ∈ Ri ⊆ {1, 2, . . . ,m} for i = 1, . . . , s and the sets Ri fulfill the following
conditions:

• |{(r1, . . . , rs)| m+ 1 ≤ ∑s
i=1 ri < m+ s}| = 0,

• |{(r1, . . . , rs)|
∑s

i=1 ri = m+ s}| ≥ ms−1(2s−3)s−1

(4s2(s−1)2)s−1 .

Consider now the b-adic digit expansion of some x =
(
x(1), . . . , x(s)

) ∈ [0, 1)s,

x(i) =
∑
si∈Si

asi
bsi

,

where Si ⊆ N is the set of indices for which we have asi ∈ {1, 2, . . . , b − 1}
for i = 1, . . . , s. Now we have to construct a point γ with the following properties:

‖x− γ‖ < b
√
s

1

b
m

2(s−1)s

, (3.2)

γ ∈ Γ, where Γ is defined as above. (3.3)

Let γ =
(
γ(1), . . . , γ(s)

)
,

γ(i) =
∑

ri∈Ri

ari
bri

,

where

Ri = {si ∈ Si| si ≤ k} ∪ Ti, where k :=
[ m

2(s− 1)s

]
,

and where ti ∈ Ti has the form

ti =

[
m

2s(s− 1)

]
+ sji

for i = 1, . . . , s− 1 and ts ∈ Ts has the form

ts = m− (s− 1)

([
m

2s(s− 1)

]
+ sm̄

)
+ sjs.

Here, j1, . . . , js ∈ {1, . . . , m̄} with

m̄ =

[
m(2s− 3)

2s2(s− 1)

]
.

Moreover, we choose ari = asi for all ri ∈ {si ∈ Si| si ≤ k} and otherwise,
ari = 1.
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By the choice of Si it then holds that [x(i)]k = [γ(i)]k for all i = 1, . . . , s.
This implies that x and γ are contained in the same square elementary interval
of order sk, i.e.,

x,γ ∈
s∏

i=1

[
Ai

bk
,
Ai + 1

bk

)
for some Ai ∈ {0, 1, . . . , bk − 1}. Therefore, it holds that

‖x− γ‖ <
√
s
1

bk
≤ b

√
s

1

b
m

2(s−1)s
.

Hence, (3.2) is shown. It remains to check, whether the condition on γ, men-
tioned at the beginning of the proof, is satisfied, i.e., if γ ∈ Γ. Obviously,
Ri ⊆ {1, 2, . . . ,m} for all i = 1, . . . , s.

To begin with, observe that for any ri ∈ Ri, where i = 1, . . . , s − 1, and for
any ss ∈ Ss, ss ≤ k we have that

s−1∑
i=1

ri + ss ≤ (s− 1)

[
m

2s(s− 1)

]
+ m̄s+ k

≤ (s− 1)

(
m

2s(s− 1)

)
+

m(2s− 3)

2s2(s− 1)
s+

m

2s(s− 1)
≤ m.

Additionally, for any s1 ∈ S1, s1 ≤ k and ri ∈ Ri, where i = 2, . . . , s it holds
that

s1 +

s∑
i=2

ri ≤ k + (s− 1)

([
m

2s(s− 1)

]
+ sm̄

)
+ sm̄

≤ s
m

2s(s− 1)
+ (s− 1)s

m(2s− 3)

2s2(s− 1)
+ s

m(2s− 3)

2s2(s− 1)
= m.

Hence, we can conclude that∣∣∣∣∣
{
(r1, . . . , rs)|

s∑
i=1

ri > m, ri ∈ Ri

}∣∣∣∣∣ =
∣∣∣∣∣
{
(t1, . . . , ts)|

s∑
i=1

ti > m, ti ∈ Ti

}∣∣∣∣∣ .
Therefore, let us consider ti ∈ Ti for i = 1, . . . , s. We have that

s∑
i=1

ti = m+ s
(
j1 + · · ·+ js − (s− 1)m̄

) 
= m+ s,

because of the fact that m̄ ∈ Z. It follows that∣∣∣∣∣
{
(r1, . . . , rs)| m+ 1 ≤

s∑
i=1

ri < m+ s
}∣∣∣∣∣ = 0.
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For the case t1 + · · ·+ ts = m+ s it holds that

js = 1 + (s− 1)m̄− j1 − · · · − js−1.

This implies that the following inequality must be fulfilled:

1 ≤ 1 + (s− 1)m̄− j1 − · · · − js−1 ≤ m̄.

Obviously, the left inequality holds for any choice of j1, . . . , js−1. For the right
inequality consider the case that j1 = ... = js−1. Then we can conclude that it
has to hold

j1 ≥
[
(s− 2)m̄

s− 1

]
+ 1.

Hence, we obtain∣∣∣∣∣
{
(r1, . . . , rs)|

s∑
i=1

ri = m+ s
}∣∣∣∣∣ =

∣∣∣∣∣
{
(t1, . . . , ts)|

s∑
i=1

ti = m+ s
}∣∣∣∣∣

=

(
m̄−

[
(s− 2)m̄

s− 1

])s−1

≥
[

m̄

s− 1

]s−1

≥ ms−1(2s− 3)s−1

(4s2(s− 1)2)s−1

by using the estimate[
m̄

s− 1

]
=

⎡
⎣[m(2s−3)

2s2(s−1)

]
s− 1

⎤
⎦ ≥ m(2s− 3)

4s2(s− 1)2
for m ≥ 2s2(s− 1)2

2s− 3
.

Thus, also (3.3) is shown. Now we finish the proof of Theorem 4. It remains to
show the second item. Let P = {x0, . . . ,xbm−1} be a (0,m, s)-net in base b
for which some element xi belongs to the set Γ. Therefore, the conditions
of Lemma 3.1 are satisfied with

α = s, β =
(4s2(s− 1)2)s−1

(2s− 3)s−1
and for any δ >

b(bs−1 − 1)(4s2(s− 1)2)s−1

(2s− 3)s−1
.

By considering the limit δ → ∞ we obtain

1

N
Δ(γ, (xn)0≤n<bm) ≤ −ms−1

bm
(b− 1)s(2s− 3)s−1

bs(4s2(s− 1)2)s−1
,

and the assertion follows with N = bm. �

118



LOWER DISCREPANCY BOUNDS OF SPECIAL SEQUENCES AND POINT SETS

4. Re-proof of Theorem 2

In the interest of clear presentation, the proof of Theorem 2 will be split into
several auxiliary lemmas. The necessity of the following two results should be
motivated. In a later step, we will define a special axes-parallel box [0,y) and
partition this multi-dimensional interval into several disjoint axes-parallel boxes
(see, equation (4.1)). Lemma 4.1 and Lemma 4.2 show under which condition on
n a sequence element Hs(n) of the Halton sequence is contained in one of these
disjoint intervals.

����� 4.1� Define xi :=
∑∞

j=1 xi,jb
−j
i , xi,j ∈ {0, 1, . . . , bi − 1}, and its trunca-

tion [xi]r :=
∑r

j=1 xi,jb
−j
i , for i = 1, . . . , s, r = 1, 2, . . . Then, we have

φbi(n) ∈
[
[xi]r, [xi]r + b−r

i

) ⇐⇒ n ≡ ẋi,r mod bri , where ẋi,r =

r∑
j=1

xi,jb
j−1
i .

P r o o f. The result follows immediately from the definition of the Halton se-
quence. �

����� 4.2� For a vector r = (r1, . . . , rs) of positive integers, let Br :=
∏s

i=1 b
ri
i ,

and the integer Mi,r, be defined such that Mi,r(Brb
−ri
i ) ≡ 1 mod brii , then

we have

φbi(n) ∈
[
[xi]ri , [xi]ri + b−ri

i

)
for i = 1, . . . , s ⇐⇒ n ≡ ẍr mod Br,

with ẍr =

s∑
i=1

Mi,rBrb
−ri
i ẋi,ri .

P r o o f. This follows immediately from Lemma 4.1 and the Chinese remainder
theorem. �

In order to obtain further information about the discrepancy function of the
Halton sequence, i.e., about Δ(·, (Hs(n))

N
n=1), we will investigate this function

for a special setting of the interval [0,y) and thereby exploit the information
gained by the previous lemmas. Accordingly, let yi, i = 1, . . . , s, be defined as

yi :=

m∑
j=1

b−jτi
i , with τi = min

{
1 ≤ k < B(i)|bki ≡ 1 mod B(i)

}
,

where m ∈ N,m ≥ B and B(i) = B
bi
. If we consider, for instance, the two-

dimensional Halton sequence in bases b1 = 2 and b2 = 3, we obtain τ1 = 2 and
τ2 = 1.
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Having gathered these tools, we put [0,y) = [0, y(1))× · · ·× [0, y(s)) ⊂ [0, 1)s.
The pertinence of introducing the integers τi will be revealed at a later step
in Lemma 4.5. For a further analysis concerning [0,y), it turns out to be bene-
ficial to consider a disjoint partitioning of this interval. To achieve the goal of a
disjoint decomposition, a truncation of the one-dimensional interval borders yi,

of the form [yi]τiki
=

∑ki

j=1 b
−jτi
i , ki ≥ 1, i = 1, . . . , s, is taken into account.

Collecting the integers ki in a vector k = (k1, . . . , ks) we arrive at

[0,y) =
⋃

1≤k1,...,ks≤m

Pk, with Pk :=
s∏

i=1

[
[yi]τiki

− b−kiτi
i , [yi]τiki

)
. (4.1)

We apply Lemma 4.2 to the interval Pk and obtain:

����� 4.3� An element Hs(n) of the Halton sequence is contained in Pk if and

only if φbi(n) ∈
[
[yi]τiki

− b−τiki
i , [yi]τiki

)
, for i = 1, . . . , s, or equivalently,

n ≡
s∑

i=1

Mi,τ ·kBτ ·kb−τiki
i ẏi,τi(ki−1) mod Bτ ·k, (4.2)

where ẏi,τiki
:=

∑ki

j=1 b
jτi−1
i . Here, τ = (τ1, . . . , τs) and the product τ ·k denotes

the vector (τ1k1, . . . , τsks).

A slight reformulation of relation (4.2) is required. Although, by the previous
lemma, we have found a criterion for a sequence element to be contained in Pk,
key steps of the proof of Theorem 2 will be based on a congruence of the form
n ≡ ỹm + Ak mod Bτ ·k, with ỹm independent of k and Ak the least positive
remainder modulo Bτ ·k, i.e.,

Ak :≡
s∑

i=1

−Mi,τ ·kBτ ·kb−1
i mod Bτ ·k, Ak ∈ [0, Bτ ·k).

This form is obtained as follows: We have
s∑

i=1

Mi,τ ·kBτ ·kb−τiki
i ẏi,τi(ki−1)

=

s∑
i=1

Mi,τ ·kBτ ·kb−τiki
i ẏi,τiki

−
s∑

i=1

Mi,τ ·kBτ ·kb−1
i

≡
s∑

i=1

Mi,τ(m+1)Bτ(m+1)b
−τi(m+1)
i ẏi,τ(m+1) −

s∑
i=1

Mi,τ ·kBτ ·kb−1
i

≡: ỹm +Ak mod Bτ ·k.
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Here ỹm is chosen such that ỹm ∈ [0, Bτ(m+1)). The first of the congruences
above follows by elementary computations. We summarize:

Hs(n) ∈ Pk ⇐⇒ n ≡ ỹm +Ak mod Bτ ·k.

Note that the multiplication τ (m+1) has to be understood componentwise, i.e.,
we have τ (m+ 1) =

(
τ1(m+ 1), . . . , τs(m+ 1)

)
.

Employing the information received from Lemma 4.3, the equality

(N1+1)Bτ ·k−1∑
n=N1Bτ ·k

(
χPk

(Hs(n))−B−1
τ ·k

)
= 0,

holds for any integer N1 ≥ 0, since amongst Bτ ·k consecutive integers the
congruence of relation (4.2) has exactly one solution. Moreover, for an integer
N2 ∈ [0, Bτ ·k), we have

ỹm+N1Bτ ·k+N2−1∑
n=ỹm+N1Bτ ·k

(
χPk

(Hs(n))− B−1
τ ·k

)
=

∑
n∈[ỹm,ỹm+N2)

(
χPk

(Hs(n))− B−1
τ ·k

)
. (4.3)

Recalling that

Hs(n) ∈ Pk ⇐⇒ n ≡ ỹm + Ak mod Bτ ·k ⇐⇒
∃ l ∈ Z, such that n = lBτ ·k + ỹm + Ak︸︷︷︸

∈[0,Bτ ·k)

,

the characteristic function in the sum (4.3) only has a nonzero contribution for
n = ỹm +Ak, i.e., l = 0, since for all other values of l, n does not belong to the
interval [ỹm, ỹm + N2). Hence, these arguments enable to restate (4.3) by the
expression ∑

n∈[ỹm,ỹm+N2)
n=ỹm+Ak

1−N2B
−1
τ ·k =

{
1−N2B

−1
τ ·k, 0 ≤ Ak < N2,

−N2B
−1
τ ·k, else.

= χ[0,N2)(Ak)−N2B
−1
τ ·k.

So far, we have constructed a special interval [0,y), partitioned this box into
subintervals and derived criteria to verify if some sequence element Hs(n) is
contained in a fixed box Pk. To make the star-discrepancy of the Halton se-
quence sufficiently large, we additionally have to construct infinitely many val-
ues for N , which are bad in the sense that they yield (in combination with the
special interval [0,y)) a large discrepancy. The decisive idea is to show the ex-
istence of such N , rather to give an explicit construction. This consideration
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is realised by taking a quantity αm into account, which represents the average

of the discrepancy function, evaluated for the sequence elements (Hs(n))
ỹm+N−1
n=ỹm

for several different values of N . Succeeding in showing that |αm| ≥ csm
s, with

cs > 0, would allow to conclude Theorem 2.

����� 4.4� Let

αm :=
1

Bτm

Bτm∑
N=1

Δ
(
y, (Hs(n))

ỹm+N−1
n=ỹm

)
,

then
αm =

∑
1≤k1,...,ks≤m

(
1

2
− Ak

Bτ ·k
− 1

2Bτ ·k

)
. (4.4)

P r o o f. We have

αm =
1

Bτm

Bτm∑
N=1

Δ
(
y, (Hs(n))

ỹm+N−1
n=ỹm

)

=
∑

1≤k1,...,ks≤m

1

Bτm

Bτm∑
N=1

ỹm+N−1∑
n=ỹm

(
χPk

(Hs(n))− B−1
τ ·k

)
︸ ︷︷ ︸

=:αm,k

.

The summands αm,k can be reformulated in the following way:

αm,k =
1

Bτm

Bτm∑
N=1

ỹm+N−1∑
n=ỹm

(
χPk

(Hs(n))−B−1
τ ·k

)

=
1

Bτm

Bτm/Bτ ·k−1∑
N1=0

Bτ ·k∑
N2=1

(
ỹm+N1Bτ ·k−1∑

n=ỹm

(
χPk

(Hs(n))−B−1
τ ·k

)
︸ ︷︷ ︸

=0

+

ỹm+N1Bτ ·k+N2−1∑
n=ỹm+N1Bτ ·k

(
χPk

(Hs(n))−B−1
τ ·k

)
︸ ︷︷ ︸

=χ[0,N2)
(Ak)−N2B

−1
τ ·k

)

=
1

Bτm

Bτm/Bτ ·k−1∑
N1=0

Bτ ·k∑
N2=1

(χ[0,N2)(Ak)−N2B
−1
τ ·k)

=
1

Bτ ·k

(
Bτ ·k∑
N2=1

χ[0,N2)(Ak)−
Bτ ·k∑
N2=1

N2B
−1
τ ·k

)
. (4.5)
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By virtue of the fact that Ak ∈ [0, Bτ ·k) the first sum of (4.5) is not vanishing
and simplifies to Bτ ·k −Ak. We therefore arrive at

αm,k =
1

2
− Ak

Bτ ·k
− 1

2Bτ ·k
,

and consequently

αm =
∑

1≤k1,...,ks≤m

(1
2
− Ak

Bτ ·k
− 1

2Bτ ·k

)
.

�

����� 4.5� Let αm be defined as in the previous lemma. Then we have

|αm| ≥ csm
s, with cs > 0.

P r o o f. For simplicity reasons, we will prove this lemma only for the two-
-dimensional Halton sequence in bases b1 = 2 and b2 = 3. The general case
works analogously with a bit more technical effort. To estimate the absolute value
of αm from below, we investigate the three occurring sums in (4.4) separately.

We have
∑

1≤k1,k2≤m
1
2 = m2

2 . The definition of Ak gives

Ak

Bτ ·k
≡ −

2∑
i=1

Mi,τ ·kBτ ·kb−1
i

Bτ ·k
mod 1, (4.6)

and therefore it is necessary to examine the expressionMi,τ ·kb−1
i mod 1 in detail.

According to the choice of the integer Mi,τ ·k and τi, we obtain in our special
case:

M1,τ ·k3k2 ≡ 1 mod 22k1 ,
hence

M1,τ ·k3k2 ≡ 1 mod 2
and consequently,

M1,τ ·k ≡ 1 mod 2.
Further

M2,τ ·k22k1 ≡ 1 mod 3k2 ,
hence

M2,τ ·k22k1 ≡ 1 mod 3
and consequently,

M2,τ ·k ≡ 1 mod 3.

Combining this result with (4.6) yields

Ak

Bτ ·k
≡ − 1

b1
− 1

b2
= −1

2
− 1

3
mod 1 = 1− 1

2
− 1

3
=

1

6
.
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Summing up the reformulated addends of equation (4.4), gives

|αm| =
∣∣∣∣∣∣m2

(1
2
− 1

6

)
−

∑
1≤k1,k2≤m

1

2Bτ ·k

∣∣∣∣∣∣ ≥ c2m
2, with c2 > 0,

and m sufficiently large. �

This estimate gives us the necessary tools to conclude Theorem 2.

P r o o f o f T h e o r e m 2. From the definition of αm (see formulation of
Lemma 4.4) and from Lemma 4.5 we conclude that for every m there is an
N with 1 ≤ N ≤ Bτm such that∣∣∣Δ(

y, (Hs(n))
ỹm+N−1
n=ỹm

)∣∣∣ ≥ csm
s.

Hence,∣∣∣Δ(
y, (Hs(n))

ỹm−1
n=0

)∣∣∣ ≥ cs
2
ms ∨

∣∣∣Δ(
y, (Hs(n))

ỹm+N−1
n=0

)∣∣∣ ≥ cs
2
ms.

Assume, the second estimate holds (the other case is treated analogously) and
set Nm := ỹm +N , i.e., ∣∣∣Δ(

y, (Hs(n))
Nm−1
n=0

)∣∣∣ ≥ cs
2
ms.

Now note that

Nm = ỹm +N ≤ Bτ(m+1) +Bτm ≤ B3m(τ1+...+τs),

i.e.,

m ≥ logNm

logB3(τ1+...+τs)
,

and therefore∣∣∣Δ(
y, (Hs(n))

Nm−1
n=0

)∣∣∣ ≥ cs
2(logB3(τ1+...+τs))s

(logNm)s.

It can easily be argued that we can obtain infinitely many such Nm, with this
property and the result follows. �

5. Proof of Theorem 5

The investigations of the current section are restricted to the two-dimensional
Halton sequence in bases b1 = 2 and b2 = 3. In the following, we survey possible
options to modify the intervals [0, y(1)) and [0, y(2)), and discuss whether these
changes still allow to derive the estimate |αm| ≥ c2m

2 or not. A way to obtain
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further possible values for y(1) or y(2) would be to remove some addends of the
specification of y(1) or y(2), i.e., to consider for example

ỹ(1) =

m∑
j=1
j �=l

2−jτ1 or ỹ(2) =

m∑
j=1
j �=l

3−jτ2 with l ∈ N and 1 ≤ l ≤ m.

Recalling equation (4.4), the choice of the modified box [0, ỹ(1))× [0, y(2)) would
have the consequence that (4.4) amounts to

αm =
∑

1≤k1,k2≤m
k1 �=l

(
1

2
− Ak

Bτ ·k
− 1

2Bτ ·k

)
.

Note, that all previous steps of the proof of Theorem 2 can easily be adapted
to this modified choice of the axes-parallel box. Since k1 only takes on (m − 1)
different values, we get

αm =
1

3
m(m− 1) −

∑
1≤k1,k2≤m

k1 �=l

1

2Bτ ·k

and therefore we are still in the position to derive a lower bound for |αm| of the
form c2m

2. The next corollary focuses on the questions of how many addends
can be removed from the representation of y(1) (or y(2)).

��������� 5.1� Let ε > 0 and fix an m > ĉ2(ε), with a sufficiently large
constant ĉ2(ε). If we remove at most m(1 − ε) addends from the representation
of y(1) (y(2)), while y(2) (y(1)) remains unchanged, then we still have

|αm| ≥ c2(ε)m
2 with c2(ε) > 0.

Up to now we have only modified y(1) (y(2)) and kept y(2) (y(1)) unchanged.
If we remove addends from the representation of y(1) and from the one of y(2),
we obtain the following corollary.

��������� 5.2� Let ε > 0 and fix an m > ĉ3(ε), with a sufficiently large
constant ĉ3(ε). If we remove at most m(1 − ε) addends from the representation
of y(1) and y(2) then we still have

|αm| ≥ c3(ε)m
2 with c3(ε) > 0.

Based on these preliminary considerations, we will derive the following lemma,
which states, that there are, in some sense, many feasible choices for the interval
borders y(1) and y(2).
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����� 5.1� Let m be sufficiently large (as in Corollary 5.2). Then, there is a
set Υ ⊆ [0, 1)2 with the following property: For all x ∈ [0, 1)2 there exists an
y ∈ Υ with

‖x− y‖ <
√
8

1

2m/2
.

Furthermore, for such a y, we have |αm| ≥ c2m
2, with some constant c2 > 0.

P r o o f. Let y(1) = 0. 010101 . . .01︸ ︷︷ ︸
2m

in base 2, and y(2) = 0. 11 . . .1︸ ︷︷ ︸
m

in base 3,

the original choice of the interval borders of the two-dimensional box [0, y(1))×
[0, y(2)). We now consider modified interval borders of the form

ỹ(1) = 0. a1 . . . al10101 . . .01︸ ︷︷ ︸
2m

with a1, . . . , al1 ∈ {0, 1}

and

ỹ(2) = 0. b1 . . . bl211 . . .11︸ ︷︷ ︸
m

with b1, . . . , bl2 ∈ {0, 1, 2}.

The question is of course, how large l1 = l1(m) and l2 = l2(m) can be chosen
for a given m, such that we still have |αm| ≥ c2m

2 for this modified choice
of the interval. The set Υ is then defined as the set of all feasible choices of
(ỹ(1), ỹ(2)). Let k̃

(i)
1 and k̃

(i−1)
1 ≤ l1/2 be integers, for which a

2k̃
(i)
1

= a
2k̃

(i−1)
1

= 1.

If one of the digits a
2k̃

(i−1)
1 +1

, . . . , a
2k̃

(i)
1 −1

is one, we split an interval of the form[
[ỹ(1)]

2k̃
(i−1)
1

, [ỹ(1)]
2k̃

(i)
1

)
into the two disjoint intervals[

[ỹ(1)]
2k̃

(i−1)
1

, [ỹ(1)]
2k̃

(i)
1

− 2−2k̃
(i)
1

)
∧

[
[ỹ(1)]

2k̃
(i)
1

− 2−2k̃
(i)
1 , [ỹ(1)]

2k̃
(i)
1

)
.

Now, let k̃
(i)
2 ≤ l2, be an integer, for which b

k̃
(i)
2

= 2. Then, we split an interval

of the form [
[ỹ(2)]

k̃
(i)
2

− 2 · 3−k̃
(i)
2 , [ỹ(2)]

k̃
(i)
2

)
into the two disjoint intervals[

[ỹ(2)]
k̃
(i)
2

− 2 · 3−k̃
(i)
2 , [ỹ(2)]

k̃
(i)
2

− 3−k̃
(i)
2

)
∧

[
[ỹ(2)]

k̃
(i)
2

− 3−k̃
(i)
2 , [ỹ(2)]

k̃
(i)
2

)
.

We investigate the influence of this additional interval on the quantity αm.
Therefore, we consider the average of the discrepancy function for the interval

J1 =
[
[ỹ(1)]

2k̃
(i−1)
1

, [ỹ(1)]
2k̃

(i)
1

− 2−2k̃
(i)
1

)
× [0, ỹ(2)),
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i.e., we study:

α̃
(1)
m =

1

Bτm

Bτm∑
N=1

⎛
⎝ỹm+N−1∑

n=ỹm

χJ1
(Hs(n))−Nλ2(J1)

⎞
⎠

=
1

Bτm

Bτm∑
N=1

⎛
⎝ỹm+N−1∑

n=ỹm

χJ1
(Hs(n))

⎞
⎠

− Bτm + 1

2

⎛
⎜⎝

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj

2j

⎛
⎝ l2∑

i=1

bi

3i
+

m∑
i=l2+1

1

3i

⎞
⎠
⎞
⎟⎠

≥ 1

Bτm

Bτm∑
N=1

⎛
⎜⎝

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

l2∑
i=1

ajbi

⌊ N

2j3i

⌋
+

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

m∑
i=l2+1

aj

⌊ N

2j3i

⌋⎞⎟⎠

− Bτm + 1

2

⎛
⎜⎝

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj

2j

⎛
⎝ l2∑

i=1

bi

3i
+

m∑
i=l2+1

1

3i

⎞
⎠
⎞
⎟⎠ .

Estimating the floor function yields:

α̃
(1)
m ≥ 1

Bτm

Bτm∑
N=1

⎛
⎜⎝

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

l2∑
i=1

ajbi

(
N

2j3i
− 1

)

+

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

m∑
i=l2+1

aj

(
N

2j3i
− 1

)⎞
⎟⎠

− Bτm + 1

2

⎛
⎜⎝

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj

2j

⎛
⎝ l2∑

i=1

bi

3i
+

m∑
i=l2+1

1

3i

⎞
⎠
⎞
⎟⎠

=
Bτm + 1

2

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

l2∑
i=1

aj

2j
bi

3i
+

Bτm + 1

2

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

m∑
i=l2+1

aj

2j
1

3i

− Bτm + 1

2

⎛
⎜⎝

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj

2j

⎛
⎝ l2∑

i=1

bi

3i
+

m∑
i=l2+1

1

3i

⎞
⎠
⎞
⎟⎠

−
⎛
⎝ l2∑

i=1

bi + (m− l2)

⎞
⎠

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj

≥ (−m− l2)

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj ≥ −2m

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj .
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We get an analogue upper bound for α̃
(1)
m , by estimating

∑ỹm+N−1
n=ỹm

χJ1
(Hs(n))

with the expression
2k̃

(i)
1 −1∑

j=2k̃
(i−1)
1 +1

l2∑
i=1

ajbi

(⌊ N

2j3i

⌋
+ 1

)
+

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

m∑
i=l2+1

aj

(⌊ N

2j3i

⌋
+ 1

)
.

To sum up, we get ∣∣∣α̃(1)
m

∣∣∣ ≤ 2m

2k̃
(i)
1 −1∑

j=2k̃
(i−1)
1 +1

aj .

In total, all intervals of this form yield therefore a contribution of at most l1m.

Studying the average of the discrepancy function for an interval of the form

J2 =
[
0, ỹ(1)

)
×

[[
ỹ(2)

]
k̃
(i)
2

− 3−k̃
(i)
2 ,

[
ỹ(2)

]
k̃
(i)
2

)
,

we get, analogously to above, an additional contribution to αm of at most l2m.
In total, we thus have, an contribution of the magnitude

m(l1 + l2).

Therefore, if l1+ l2 < m, we still can derive an estimate of the form |αm| ≥ c2m
2

for the modified box [0, ỹ(1))× [0, ỹ(2)). Let now m be given and x = (x1, x2) ∈
[0, 1)2, arbitrary but fixed, where

x1 =
∑
i≥1

ai
2i
, ai ∈ {0, 1} and x2 =

∑
i≥1

bi
3i
, bi ∈ {0, 1, 2}.

Due to above considerations, we can find y ∈ Υ, which satisfies

‖x− y‖ <

√( 1

2�
m
2 	−1

)2

+
( 2

3�
m
2 	−1

)2

<
√
8

1

2m/2
,

and also allows to derive |αm| ≥ c2m
2. �

Based on the previous lemma, we are in the position to prove Theorem 5,
which gives a lower bound for the discrepancy for a specific N and not just for
the average.

P r o o f o f T h e o r e m 5. Fix anm, which satisfies the condition of Lemma 5.1
and recall Nm = N + ỹm, as in the proof of Theorem 2. Consider now squares

Qi ⊆ [0, 1)2 of side length 2
√
8

2m/2 . Due to Lemma 5.1, we know that each such
square contains elements of the set Υ (defined as in Lemma 5.1). We partition

[0, 1)2 into 2m

32 such squares Qi. Choose, for each Qi, yi ∈ Qi ∩ Υ. For some
fixed yi, we have |αm(yi)| ≥ c2m

2. (5.1)
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Let c2 > 0 be small enough, such that this estimate holds for all other choices
yj ∈ Qj 
= Qi as well.
Note, that we always have |αm| ≤ cm2 for a fixed constant c > 0, since

D∗
(
(H2(n))

N
n=1

)
≤ c

(logN)2

N
, for all N.

Now, we claim that the number of Ns with 1 ≤ N ≤ Bτm and∣∣∣Δ(
yi, (H2(n))

Nm
n=1

)∣∣∣ < c2
2
m2

is at most κBτm, with κ := c−c2
c−c2/2

.

Suppose the number of Ns with 1 ≤ N ≤ Bτm and∣∣∣Δ(
yi, (H2(n))

Nm
n=1

)∣∣∣ < c2
2
m2

would be larger than κBτm. Then, we would have

|αm(yi)Bτm| < κBτm
c2
2
m2 + (1− κ)Bτmcm2 = c2Bτmm2,

which is a contradiction to inequality (5.1).
Therefore, the number of Ns with 1 ≤ N ≤ Bτm and∣∣∣Δ(

yi, (H2(n))
Nm
n=1

)∣∣∣ ≥ c2
2
m2

is at least (1− κ)Bτm = c2
2c−c2

Bτm.

To sum up, we have 2m

32 squares Qi, and for each of them, we have identified
(1 − κ)Bτm distinct values for N , 1 ≤ N ≤ Bτm, which give a sufficiently

large discrepancy. Thus, in total we have identified 2m

32 (1− κ)Bτm many N and

this implies that at least one of those N is identified at least 2m

32 (1 − κ)-times.
Let N0 be an N with this certain multiplicity. Further, this means that there
exist at least 2m

32 (1− κ) distinct yi ∈ ∪i Qi ∩Υ, such that∣∣∣Δ(
yi, (H2(n))

N(0)
m

n=1

)∣∣∣ ≥ c2
2
m2,

where N
(0)
m := N0+ ỹm. Note, that the union of all squares Qi containing the yi

with this property, forms the set ΛN0
and therefore λ2(ΛN ) ≥ 1− κ. It remains

to verify, that for all x ∈ ΛN0
there exists a y ∈ [0, 1)2 having a distance less

than
√
8 1

N
1
14
. Since 1 ≤ N0 ≤ Bτm, the claim immediately follows by Lemma 5.1

and the estimate ỹm +Bτm < 27m. �


����� 3� We note, that the considerations of this section can also be adopted
to an arbitrary dimension s > 2. For ease of notation, we have only presented
them in the two-dimensional case for the bases b1 = 2 and b2 = 3.
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