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MOTZKIN’S MAXIMAL DENSITY AND

RELATED CHROMATIC NUMBERS

Anshika Srivastava — Ram Krishna Pandey* — Om Prakash

ABSTRACT. This paper concerns the problem of determining or estimating the
maximal upper density of the sets of nonnegative integers S whose elements do
not differ by an element of a given set M of positive integers. We find some exact
values and some bounds for the maximal density when the elements of M are
generalized Fibonacci numbers of odd order. The generalized Fibonacci sequence
of order r is a generalization of the well known Fibonacci sequence, where instead

of starting with two predetermined terms, we start with r predetermined terms
and each term afterwards is the sum of r preceding terms. We also derive some
new properties of the generalized Fibonacci sequence of order r. Furthermore,
we discuss some related coloring parameters of distance graphs generated by the
set M .

Communicated by Georges Grekos

1. Introduction

For a given set M of positive integers, a problem of Motzkin’s asks to find
the maximal upper density of sets S of nonnegative integers in which no two
elements of S are allowed to differ by an element of M. Following Motzkin, if
M be a given set of positive integers, a set S of nonnegative integers is said to
be an M -set if a ∈ S, b ∈ S implies a− b /∈ M. Let S be any set of nonnegative
integers and S(x) be the number of elements n ∈ S such that n ≤ x, x ∈ R.

We define the upper and lower densities of S, denoted respectively by δ(S) and
δ(S), by

δ(S) = lim sup
x→∞

S(x)

x
, δ(S) = lim inf

x→∞
S(x)

x
.
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We say that S has density δ(S), when δ(S)= δ(S)= δ(S). The parameter of
interest is the maximal density of an M -set, defined by

μ(M ) := sup δ(S),

where the supremum is taken over all M -sets S. Mo t z k i n posed the prob-
lem of determining the quantity μ(M ). In 1973, C a n t o r and G o r d o n [1]
proved that there exists a set S such that δ(S) = μ(M ), when M is finite. The
following two lemmas proved in [1] and [7], respectively, are useful results for
bounding μ(M ).

����� 1.1� Let M = {m1,m2,m3, . . .}, and c and m be positive integers such
that gcd(c,m) = 1. Then

μ(M ) ≥ κ(M ) := sup
(c,m)=1

(1/m)min
k≥1

|cmk|m,

where |x|m denotes the absolute value of the absolutely least remainder of x
(mod m).

����� 1.2� Let α be a real number, α ∈ [0, 1]. If for any M -set S with 0 ∈ S
there exists a positive integer k such that S(k) ≤ (k + 1)α, then μ(M ) ≤ α.

For a finite set M, by a remark of H a r a l a m b i s [7], we can write κ(M ) as,

κ(M ) = max
m=mi+mj

1≤k≤m
2

(1/m)min
i

|kmi|m, (1.1)

where mi,mj are distinct elements of M .

Motzkin’s density problem has wide connections to some coloring problems.
The study of Motzkin’s density problem is equivalent to the study of the frac-
tional chromatic number of distance graphs. A fractional coloring of a graph
G is a mapping c which assigns to each independent set I of G a non-negative
weight c(I) such that for each vertex x,

∑
x∈I c(I) ≥ 1. The fractional chromatic

number of G, denoted by χf (G), is the least total weight of a fractional coloring
of G. Let D be a set of positive integers. The distance graph generated by D,
denoted by G(Z,D), has set Z as the vertex set, and two vertices x and y are
adjacent whenever |x − y| ∈ D. It is proved by C h a n g et al. [2] that for any
finite set D, finding the fractional chromatic number of distance graphs or the
maximal density is the same problem. Precisely, they proved the next theorem.

����	�� 1.1� For any finite set D of positive integers, μ(D) = 1/χf

(
G(Z,D)

)
.

Further, the fractional chromatic number is related with another useful chro-
matic number called the circular chromatic number defined as follows: Let
k ≥ 2d be positive integers. A (k, d)-coloring of a graph G is a mapping,
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c : V (G) → {0, 1, . . . k−1}, such that d ≤ |c(u)−c(v)| ≤ k−d for any uv ∈ E(G).
The circular chromatic number of G, denoted by χc(G), is the minimum ratio
k/d such that G admits a (k, d)-coloring. It is proved [15] that for any graph G,

χf(G) ≤ χc(G) ≤ χ(G) = �χc(G)�,
Moreover, for distance graphs G(Z,D) with distance set D, the following theo-
rem [15] relates circular chromatic number with κ(D):

����	�� 1.2� For any finite set D of positive integers, χc

(
G(Z,D)

) ≤ 1
κ(D) .

The values and bounds of μ(M ) have been studied for several special families
of sets M ([1], [2], [5], [6], [7], [4], [8], [9], [13], [12], [11]) but, in general, only for
|M | ≤ 2, complete solution was given by C a n t o r and G o r d o n [1]. In this
paper, we intend to study the problem of estimating the maximal density μ(U )
when the set U is finite and consists of the first consecutive generalized Fibonacci
numbers of odd order. The Fibonacci sequence has been generalized in many
ways. One of them is the Fibonacci sequence {Un} of order r. Let r ≥ 1 be
an integer. The Fibonacci sequence {Un} of order r is given by the recurrence
relation

Un = Un−1 + Un−2 + · · ·+ Un−r, where n ≥ r,

with the r initial terms

Un = 0 for 0 ≤ n ≤ r − 2, and Ur−1 = 1.

These generalized Fibonacci numbers are also known as the Fibonacci r-step
numbers. The usual Fibonacci numbers can be obtained by fixing r = 2. For
small values of r, these sequences are sometimes called by individual names.
For r = 3, tribonacci sequence; for r = 4, tetranacci sequence, and so on. When
r = 2, we know that the sequence ( Un

Un−1
) (the ratio of two consecutive Fibonacci

numbers) converges to the golden ratio. A fact about this generalization is that,
like the usual Fibonacci sequence, lim

n→∞
Un

Un−1
exists and is the real positive root

of the equation xr − xr−1 − · · · − x− 1 = 0. All other roots of this equation lie
inside the unit circle. The polynomial xr−xr−1−· · ·−x−1 has been extensively
studied. For detailed work on this polynomial, one may refer to ([3], [10], [14]).

In Section 2, we give some new properties related to r-step Fibonacci numbers.
These properties are then applied to derive the main results about the maximal
density of odd order r-step Fibonacci numbers in Section 3. Further, in Section 4,
we relate our results with the two chromatic numbers, defined earlier, of distance
graphs.
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2. Some properties of the Fibonacci r-step numbers

In this section, we prove some lemmas concerning the Fibonacci r-step num-
bers. These lemmas are then applied to prove the results of the next section.

����� 2.1� For n ≥ r + 1, the elements of the set {Un−r−1, Un−1, Un} are in
arithmetic progression.

P r o o f. We have,

Un = Un−1 + Un−2 + · · ·+ Un−r

= Un−1 + Un−2 + · · ·+ Un−r + Un−r−1 − Un−r−1

= 2Un−1 − Un−r−1.

Hence, the lemma. �

����� 2.2� Let r > 2 be an odd integer. Then,

(i) for r ≤ i ≤ 2r − 1,

Ui = 2i−r = 3

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠+ (−1)i+1 ;

(ii) for i > 2r − 1,

Ui = 3

⎛
⎝r−1

2∑
k=1

Ui−2k

⎞
⎠+

⎛
⎝ r∑

k= r+1
2

Ui−2k

⎞
⎠ .

P r o o f.

(i) Clearly, if i = r, then Ur = 1, satisfies the formula. So, let r+1 ≤ i ≤ 2r−1.
Using the recurrence Ui = 2Ui−1 − Ui−r−1 and Ur = Ur−1 = 1, we have
Ui = 2i−r. So, if i is even,

r−1
2∑

k=1

Ui−2k = (2i−2−r + 2i−4−r + · · ·+ 2) + 1

= 2

(
2i−1−r − 1

3

)
+ 1 =

2i−r + 1

3
,

and if i is odd,
r−1
2∑

k=1

Ui−2k = (2i−2−r + 2i−4−r + · · ·+ 1) =
2i−r − 1

3
.

Therefore, for each i,

Ui = 3

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠+ (−1)i+1.
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(ii) Since Ui = Ui−1 + Ui−2 + · · ·+ Ui−r, we have, for i > 2r − 1,

Ui = (Ui−1 + Ui−3 + · · ·+ Ui−r+2)

+ (Ui−2 + Ui−4 + v + Ui−r+1) + Ui−r

= (2Ui−2 − Ui−r−2) + · · ·+ (2Ui−r+1 − Ui−2r+1)

+ (Ui−2 + Ui−4 + · · ·+ Ui−r+1) + Ui−r

= 3

⎛
⎝r−1

2∑
k=1

Ui−2k

⎞
⎠+ (Ui−r − Ui−r−2 − Ui−r−4 − · · · − Ui−2r+1)

= 3

⎛
⎝r−1

2∑
k=1

Ui−2k

⎞
⎠+

⎛
⎝ r∑

k= r+1
2

Ui−2k

⎞
⎠ .

This completes the proof of the lemma. �

����� 2.3� Let r > 2 be an odd integer. Then, for i ≥ r,

Ui and (Ui−2 + Ui−4 + · · ·+ Ui−r+1) are of opposite parity.

P r o o f. We take the following two cases:

Case 1: (r ≤ i ≤ 2r − 1). Since,

Ui = 2i−r = 3

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠+ (−1)i+1,

we have Ui and
∑ r−1

2

k=1 Ui−2k are of opposite parity.

Case 2: (2r ≥ i). We prove this by induction on i. The basis step, i = 2r is
clearly true as

U2r = 3

⎛
⎝ r−1

2∑
k=1

U2r−2k

⎞
⎠+

⎛
⎝ r∑

k= r+1
2

U2r−2k

⎞
⎠ ,

where the second sum on the right hand side is equal to 1.

Now, let the result be true for all l such that 2r ≤ l < i. Then, we need to prove
this for i as well. We have,

r∑
k= r+1

2

Ui−2k = Ui−r−1 + (Ui−r−3 + Ui−r−5 + · · ·+ Ui−2r)

= Ui−r−1 +

r−1
2∑

k=1

U(i−r−1)−2k.
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By the induction hypothesis, Ui−r−1 and
∑ r−1

2

k=1 U(i−r−1)−2k are of opposite

parity. This implies that
∑r

k= r+1
2

Ui−2k is odd. Thus, Ui and
∑ r−1

2

k=1 Ui−2k are of

opposite parity by Lemma 2.2. Hence, the lemma. �

We use the following elementary property of positive integers in the proof of
the next lemma.


���	� 2.1� Let a, b, c, and d be positive integers with b > d, and a
b < c

d .
Then

a− c

b− d
<

a

b
<

c

d
.

����� 2.4� Let r > 2 be an odd integer and i ≥ 2r − 1. Then,

2r−3 − 1

3(2r−3)
<

Ui−2 + Ui−4 + · · ·+ Ui−r+1

Ui
<

2r−2 + 1

3(2r−2)
.

Further, for n ≥ 2r + 1, the sequence
(
f(n)

)
, where

f(n) =
Un−2 + Un−4 + · · ·+ Un−r+1 +

2r−2+1
3

Un + 2r−2
,

is strictly decreasing.

P r o o f. Since Un = 2Un−1−Un−r−1 for n ≥ r+1, we have for n ≥ 2r, Un

Un−1
< 2.

Hence, Un

Un−i
< 2i, if n ≥ r + i. This implies that

Ui−2 + Ui−4 + · · ·+ Ui−r+1

Ui
>

1

22
+

1

24
+ · · ·+ 1

2r−1
,

if i ≥ 2r − 1. Thus, if i ≥ 2r − 1, then

Ui−2 + Ui−4 + · · ·+ Ui−r+1

Ui
>

1

22
+

1

24
+ · · ·+ 1

2r−1
>

2r−3 − 1

3(2r−3)
.

On the other hand, for i ≥ 2r − 1,

Ui > 3

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ ,

which gives

Ui−2 + Ui−4 + · · ·+ Ui−r+1

Ui
<

2r−2 + 1

3(2r−2)
.

This proves the first part of the lemma.
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For the second part, we apply induction on n to show that f(n) < f(n − 1)
for all n ≥ 2r+2. Notice that f(2r+2) = 1

3 − 2
3(U2r+2+2r−2) , and f(2r+1) = 1

3 .

Hence, the basis step is satisfied. Since Un = 2Un−1 − Un−r−1, we have

f(n) =
Un−2 + Un−4 + · · ·+ Un−r+1 +

2r−2+1
3

Un + 2r−2

=

2

(
r−1
2∑

k=1

Un−1−2k

)
−
(

r−1
2∑

k=1

Un−r−1−2k

)
+ 2r−2+1

3

2Un−1 − Un−r−1 + 2r−2

=

2

(
r−1
2∑

k=1

Un−1−2k +
2r−2+1

3

)
−
(

r−1
2∑

k=1

Un−r−1−2k + 2r−2+1
3

)

2(Un−1 + 2r−2)− (Un−r−1 + 2r−2)
.

Now, by induction hypothesis assume that

f(n− 1) =

r−1
2∑

k=1

Un−1−2k + 2r−2+1
3

(Un−1 + 2r−2)
< f(n− 2) < · · · f(n− r − 1)

=

r−1
2∑

k=1

Un−r−1−2k + 2r−2+1
3

(Un−r−1 + 2r−2)
< · · · f(2r + 1).

Letting

a = 2

⎛
⎝ r−1

2∑
k=1

Un−1−2k +
2r−2 + 1

3

⎞
⎠ , b = 2(Un−1 + 2r−2),

c =

r−1
2∑

k=1

Un−r−1−2k +
2r−2 + 1

3
, and d = Un−r−1 + 2r−2

in Remark (2.1), we have

2

(
r−1
2∑

k=1

Un−1−2k +
2r−2+1

3

)
−
(

r−1
2∑

k=1

Un−r−1−2k + 2r−2+1
3

)

2(Un−1 + 2r−2)− (Un−r−1 + 2r−2)

<

r−1
2∑

k=1

Un−1−2k + 2r−2+1
3

(Un−1 + 2r−2)
<

r−1
2∑

k=1

Un−r−1−2k + 2r−2+1
3

(Un−r−1 + 2r−2)
.
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This gives, f(n) < f(n− 1). Thus, f(n) < f(n− 1) for all n ≥ 2r + 2.
Hence, the lemma. �


���	� 2.2� We have for r ≤ n ≤ 2r − 1,

Un = 2n−r = 3

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠+ (−1)n+1.

Therefore, if n is odd, then f(n) = 1
3
, and if n is even, then f(n)= 1

3
+ 2

3(Un+2r−2)
.

Further, f(2r)= 1
3 . Thus, the finite sequence

(
f(n)

)2r
n=r

is not monotonic.

3. Main Results

����	�� 3.1� Let r>2 be an odd integer and let U = {Ur, Ur+1, . . . , Un}. Then,
(i) if r + 1 ≤ n ≤ 2r + 1, then

μ(U ) = κ(U ) =
1

3
;

(ii) if n > 2r + 1, then

1

3
> μ(U ) ≥ κ(U ) ≥

(Un−2 + Un−4 + · · ·+ Un−r+1 + 1)2r−3 − Un

(
2r−3−1

3

)
Un + 2r−2

.

P r o o f. (i) We have, for r ≤ i ≤ 2r − 1,

Ui = 2i−r ≡ ±1 (mod 3).
In addition, we also have

U2r = 2U2r−1 − Ur−1 = 2r − 1 ≡ 1 (mod 3),

U2r+1 = 2U2r − Ur = 2r+1 − 3 ≡ 1 (mod 3).

Therefore, taking c = 1 and m = 3 in Lemma 1.1, we have μ(U ) ≥ κ(U ) ≥ 1
3 .

On the other hand, any U -set cannot contain any consecutive integers as well as
consecutive integers of same parity as {1, 2} ⊆ U. This implies that, μ(U ) ≤ 1

3
.

This completes the proof in this case.

(ii) Since Un and (Un−2 + Un−4 + · · · + Un−r+1) are of opposite parity and
2r−2+1

3 is an odd integer, so

x =
(Un + 2r−2)− (Un−2 + Un−4 + · · ·+ Un−r+1 +

2r−2+1
3 )

2
is an integer.
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We claim that for r ≤ i ≤ n,

Uix ≡ Un + 2r−2

2

−
Ui

(
r−1
2∑

k=1

Un−2k +
2r−2+1

3

)
−
(

r−1
2∑

k=1

Ui−2k

)
(Un+2r−2)

2
(mod Un+2r−2).

If Ui is even, then

Uix = Ui

(Un + 2r−2)− (Un−2 + Un−4 + · · ·+ Un−r+1 +
2r−2+1

3 )

2

≡ −Ui

(Un−2 + Un−4 + · · ·+ Un−r+1 +
2r−2+1

3 )

2

≡ (Ui−2 + · · ·+ Ui−r+1 + 1)(Un+ 2r−2)

2

− Ui

(Un−2 + · · ·+ Un−r+1 +
2r−2+1

3 )

2
(mod Un+2r−2).

Next, if Ui is odd, then

Uix = Ui

(Un + 2r−2)− (Un−2 + Un−4 + · · ·+ Un−r+1 +
2r−2+1

3 )

2

≡ Un + 2r−2

2
− Ui

(Un−2 + Un−4 + · · ·+ Un−r+1 +
2r−2+1

3 )

2

≡ (Ui−2 + · · ·+ Ui−r+1 + 1)(Un + 2r−2)

2

− Ui

(Un−2 + · · ·+ Un−r+1 +
2r−2+1

3 )

2
(mod Un + 2r−2).

Thus, we obtain our claim.

Next, we have for r ≤ i ≤ 2r − 1,

Ui = 3

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠+ (−1)i+1.

Hence, it is easy to see that

(Ui−2+ · · ·+Ui−r+1+1)(Un+2r−2)−Ui(Un−2+ · · ·+Un−r+1+
2r−2 + 1

3
) > 0.

35



ANSHIKA SRIVASTAVA — RAM KRISHNA PANDEY — OM PRAKASH

Further, for n ≥ i > 2r − 1, we have, by Lemma 2.4, that

2r−3 − 1

3(2r−3)
<

Ui−2 + Ui−4 + · · ·+ Ui−r+1

Ui
.

This gives

2r−3 − 1

3(2r−3)
<

Ui−2 + Ui−4 + · · ·+ Ui−r+1 + 1

Ui
.

Therefore,

2r−3 − 1

3(2r−3)
<

Ui−2 + Ui−4 + · · ·+ Ui−r+1 +
2r−2+1

3

Ui + 2r−2

<
Ui−2 + Ui−4 + · · ·+ Ui−r+1 + 1

Ui
.

Thus,

(Ui−2+ · · ·+Ui−r+1+1)(Un+2r−2)−Ui(Un−2+ · · ·+Un−r+1+
2r−2 + 1

3
) > 0.

Now for all i, there are two cases: either

Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠ >

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2)

or

Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠ <

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2).

Equality may also hold for some i, but in that case the maximum absolute

remainder modulo (Un + 2r−2) is Un+2r−2

2 , which is not helpful in calculating
κ(M ) (see (1.1)) as we shall see below in both the cases that inequality does
hold for some i.

��� 1� Ui

(
r−1
2∑

k=1

Un−2k +
2r−2+1

3

)
>

(
r−1
2∑

k=1

Ui−2k

)
(Un + 2r−2).

Clearly,

|Uix|(Un+2r−2)

=
Un + 2r−2

2
−

Ui

(
r−1
2∑

k=1

Un−2k + 2r−2+1
3

)
−
(

r−1
2∑

k=1

Ui−2k

)
(Un + 2r−2)

2
.

36



MOTZKIN’S MAXIMAL DENSITY AND RELATED CHROMATIC NUMBERS

In addition, by Lemma 2.4, for all i, n ≥ i ≥ 2r − 1, we have

r−1
2∑

k=1

Un−2k +
2r−2+1

3

Un + 2r−2
≤

r−1
2∑

k=1

Ui−2k +
2r−2+1

3

Ui + 2r−2
.

Therefore,

0 < Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2)

≤ (Un + 2r−2)

(
2r−2 + 1

3

)
− 2r−2

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠

= Un

(
2r−2 + 1

3

)
− 2r−2

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠ .

Observe here that equality holds when i = n, Therefore, for all i, n ≥ i ≥ 2r−1,
we have

min(|Uix|)(Un+2r−2)=
Un + 2r−2

2
−

Un

(
2r−2+1

3

)
− 2r−2

(
r−1
2∑

k=1

Un−2k

)

2

=(Un−2+ Un−4 + · · ·+ Un−r+1+ 1)2r−3−Un

2

(
2r−2 − 2

3

)

=(Un−2+ Un−4 + · · ·+ Un−r+1+ 1)2r−3− Un

(
2r−3 − 1

3

)
.

Now, let 2r − 2 ≥ i ≥ r. We observe below that the inequality condition of
Case 1 is satisfied by only those Ui for which i is odd (the rest of the Uis will
satisfy the reverse inequality condition mentioned ahead in Case 2).

Let i be odd such that r ≤ i ≤ 2r − 2. Clearly,

Ui = 3

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠+ 1

and, as n > 2r + 1 > 2r − 1, we have

2r−3 − 1

3(2r−3)
<

r−1
2∑

k=1

Un−2k

Un
.
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This implies

Un − 3

r−1
2∑

k=1

Un−2k − 1

Un + 2r−2
<

1

2r−3
≤ 1

Ui
=

Ui − 3

r−1
2∑

k=1

Ui−2k

Ui
.

Therefore,

Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠ >

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2).

Observe that, since n > 2r + 1, we have Un > 3

r−1
2∑

k=1

Un−2k + 1. Therefore,

Un

(
2r−2 + 1

3

)
− 2r−2

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠

−
⎛
⎝Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2)

⎞
⎠

=
Ui + 2r−2

3

⎛
⎝Un − 3

r−1
2∑

k=1

Un−2k − 1

⎞
⎠ ≥ 0.

Therefore, in this case, for all i, r ≤ i ≤ n,

min(|Uix|)(Un+2r−2) = (Un−2+Un−4+ · · ·+Un−r+1+1)2r−3−Un

(
2r−3 − 1

3

)
.

��� 2� Ui

(
r−1
2∑

k=1

Un−2k +
2r−2+1

3

)
<

(
r−1
2∑

k=1

Ui−2k

)
(Un + 2r−2).

We have,

Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2)

= Ui

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠Un +

⎛
⎝Ui

2r−2 + 1

3
− 2r−2(

r−1
2∑

k=1

Ui−2k)

⎞
⎠

38



MOTZKIN’S MAXIMAL DENSITY AND RELATED CHROMATIC NUMBERS

Therefore, for all i, n ≥ i ≥ 2r − 1, we have

Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2)

≥ Ui

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠Un

≥ 2r−2 3

2r−2 + 1

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠
⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠Un

=

3

(
r−1
2∑

k=1

Ui−2k

)

2r−2 + 1

⎛
⎝2r−2

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠− Un

(
2r−2 + 1

3

)⎞⎠

≥ 2r−2

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠− Un

(
2r−2 + 1

3

)
.

Since, for n > 2r + 1 > 2r − 1, we have

2r−3 − 1

3(2r−3)
<

r−1
2∑

k=1

Un−2k

Un
.

This implies that

Un

(
2r−2 + 1

3

)
− 2r−2

r−1
2∑

k=1

Un−2k < Un + 2r−2.

Therefore, for all i, n ≥ i ≥ 2r − 1, we have

|Uix|Un+2r−2

=
Un + 2r−2

2
+

Ui

(
r−1
2∑

k=1

Un−2k +
2r−2+1

3

)
−
(

r−1
2∑

k=1

Ui−2k

)
(Un + 2r−2)

2
.

Observe that for n > 2r + 1, we have Un > 3

r−1
2∑

k=1

Un−2k + 1, which implies

3

r−1
2∑

k=1

Un−2k + 1− Un

Un + 2r−2
<

1

2r−2
.
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Now, let 2r − 2 ≥ i ≥ r and i is even. Clearly,

Ui = 3

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠− 1.

Therefore,
3

r−1
2∑

k=1

Un−2k + 1− Un

Un + 2r−2
<

3

r−1
2∑

k=1

Ui−2k − Ui

Ui
,

and hence

Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2) < 0.

Moreover, when Ui = 3
(∑ r−1

2

k=1 Ui−2k

)
− 1,

Ui

⎛
⎝ r−1

2∑
k=1

Un−2k +
2r−2 + 1

3

⎞
⎠−

⎛
⎝ r−1

2∑
k=1

Ui−2k

⎞
⎠ (Un + 2r−2)

−
⎛
⎝2r−2

⎛
⎝ r−1

2∑
k=1

Un−2k

⎞
⎠− Un

(
2r−2 + 1

3

)⎞⎠

=
Ui − 2r−2

3

⎛
⎝3

r−1
2∑

k=1

Un−2k + 1− Un

⎞
⎠ ≤ 0.

Notice that the above inequality is sharp for i = 2r − 2. Therefore, in this case
for all i, r ≤ i ≤ n,

min(|Uix|)(Un+2r−2) =
Un + 2r−2

2
+

2r−2

(
r−1
2∑

k=1

Un−2k

)
− Un

(
2r−2+1

3

)
2

= (Un−2 + Un−4 + · · ·+n−r+1 +1)2r−3 − Un

(
2r−3 − 1

3

)
.

Therefore, by the definition of κ(U ) (see (1.1)), in both the cases,

μ(U ) ≥ κ(U ) ≥
(Un−2 + Un−4 + · · ·+ Un−r+1 + 1)2r−3 − Un

(
2r−3−1

3

)
Un + 2r−2

.

On the other hand, when r is odd,

U2r+2 = 2U2r+1 − Ur+1 = 2r+2 − 8 ≡ 0 (mod 3).
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We decompose {0, 1, 2, . . . , U2r+2} into the sets {3i, 3i+ 1, 3i+ 2} and {U2r+2},
where 0 ≤ i ≤ U2r+2−3

3 . Let S be an U -set with 0 ∈ S. Then it is clear that
|S∩{3i, 3i+1, 3i+2}| ≤ 1 and U2r+2 /∈ S. Thus, using Lemma 1.2, for n > 2r+1,

we have μ(U ) ≤ μ{Ur, Ur+1, . . . , U2r+2} ≤ U2r+2

3(U2r+2+1) <
1
3 . Therefore,

1

3
> μ(U ) ≥ κ(U ) ≥

(Un−2 + Un−4 + · · ·+ Un−r+1 + 1)2r−3 − Un

(
2r−3−1

3

)
Un + 2r−2

.

This completes the proof of the theorem. �

The following theorem directly follows from the above theorem.

����	�� 3.2� Let U = {Ur, Ur+1, . . . , Un} and n > 2r + 1. Then

κ(U ) ≥ 1

3
− 2r−3

(
1

3
− α− 1

α+ 1

)
>

1

4
,

where α is the real root of the polynomial f(x) = xr − xr−1 −xr−2 − · · · −x− 1.

P r o o f. We have that

(
Un−2+Un−4+···+Un−r+1+

2r−2+1
3

Un+2r−2

)
is a decreasing sequence,

by Lemma 2.4. Now,(
Un−2 + Un−4 + · · ·+ Un−r+1 +

2r−2+1
3

)
2r−3 − (Un + 2r−2)2

r−3−1
3

Un + 2r−2

=
(Un−2 + Un−4 + · · ·+ Un−r+1 + 1)2r−3 − Un

(
2r−3−1

3

)
Un + 2r−2

= zn, say.

Then (zn) is also a decreasing sequence. We find the limit of the sequence (zn).
Note that (Un) is an increasing sequence. Hence, Un → ∞ as n → ∞. Let

z = lim
n→∞

zn

= lim
n→∞

(Un−2 + Un−4 + · · ·+ Un−r+1 + 1)2r−3 − Un

(
2r−3−1

3

)
Un + 2r−2

= lim
n→∞

(
Un−2

Un
+ Un−4

Un
+ · · ·+ Un−r+1

Un
+ 1

Un

)
2r−3 −

(
2r−3−1

3

)
1 + 2r−2

Un

.

Since

lim
n→∞

Un

Un−1
= α, we have lim

n→∞
Un

Un−k
= lim

n→∞
Un

Un−1
· Un−1

Un−2
· · · Un−k+1

Un−k
= αk.
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Therefore,
z =

(
1

α2
+

1

α4
+ · · ·+ 1

αr−1

)
2r−3 −

(
2r−3 − 1

3

)
.

Letting α the real positive root of f(x), we get

αr − αr−1 − αr−2 − · · ·α− 1 = 0

⇒ 1− 1

α
− 1

α2
− · · · − 1

αr
= 0

⇒ 1− 1

α
− 1

α3
− · · · − 1

αr
=

1

α2
+

1

α4
+ · · ·+ 1

αr−1

⇒ 1− 1

α
− 1

α

(
1

α2
+

1

α4
+ · · ·+ 1

αr−1

)
=

1

α2
+

1

α4
+ · · ·+ 1

αr−1

⇒ 1

α2
+

1

α4
+ · · ·+ 1

αr−1
=

α− 1

α+ 1
.

Therefore,

z =

(
α− 1

α+ 1

)
2r−3 −

(
2r−3 − 1

3

)
=

1

3
− 2r−3

(
1

3
− α− 1

α+ 1

)
.

However, z is the limit of the decreasing sequence (zn), where

zn =
(Un−2 + Un−4 + · · ·+ Un−r+1 + 1)2r−3 − Un

(
2r−3−1

3

)
Un + 2r−2

.

This implies that for every n, zn ≥ z. Now using Theorem 3.1, we have

κ(U ) ≥
(Un−2 + Un−4 + · · ·+ Un−r+1 + 1)2r−3 − Un

(
2r−3−1

3

)
Un + 2r−2

≥ 1

3
− 2r−3

(
1

3
− α− 1

α+ 1

)
.

Let g(x) = (x− 1)f(x) = xr+1 − 2xr + 1. Since 2r+1
3 < 2r−1, we have

g

(
2− 3

2r + 1

)
=

(
2− 3

2r + 1

)r+1

− 2

(
2− 3

2r + 1

)r

+ 1

<

(
2− 1

2r−1

)r+1

− 2

(
2− 1

2r−1

)r

+ 1

= −2

(
1− 1

2r

)r

+ 1 < 0.
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Now as g(2) = 1 > 0, g(x) has at least one root in the interval (2 − 3
2r+1 , 2).

But using Descartes’ rule of signs, g(x) has only two positive roots. Therefore,

positive root of g(x) other that 1 is α. Hence, α > 2 − 3
2r+1 = 2r−1−1

2r+1 , which

implies that α−1
α+1 > 2r−1−1

32r−1 . Therefore,

κ(U ) ≥ 1

3
− 2r−3

(
1

3
− α− 1

α+ 1

)
>

1

4
.

This completes the proof of the theorem. �

4. Chromatic number of the distance graph G(Z,U)

Using Theorems 3.1 and 3.2, we determine below the chromatic number of
the distance graph G(Z,U ).

����	�� 4.1� Let U = {Ur, Ur+1, . . . , Un}. Then
(i) if r + 1 ≤ n ≤ 2r + 1, then

1

μ(U )
= χf

(
G(Z,U )

)
= χc

(
G(Z,U )

)
= χ

(
G(Z,U )

)
=

1

κ(U )
= 3;

(ii) if n > 2r + 1, then

3 <
1

μ(U )
= χf

(
G(Z,U )

) ≤ χc

(
G(Z,U )

) ≤ 1

κ(U )
< 4,

and

χ
(
G(Z,U )

)
= 4.

P r o o f. Using Theorems 1.1 and 1.2 for a distance set D, we have

1

μ(D)
= χf

(
G(Z,D)

) ≤ χc

(
G(Z,D)

) ≤ 1

κ(D)
,

and
�χc

(
G(Z,D)

)� = χ
(
G(Z,D)

)
.

Therefore, by Theorem 3.1, if r + 1 ≤ n ≤ 2r + 1, then

1

μ(U )
= χf

(
G(Z,U )

)
= χc

(
G(Z,U )

)
= χ

(
G(Z,U )

)
=

1

κ(U )
= 3.

Next, if n > 2r + 1, then using Theorem 3.1 and Theorem 3.2,

3 <
1

μ(U )
= χf

(
G(Z,U )

) ≤ χc

(
G(Z,U )

) ≤ 1

κ(U )
< 4,

and
χ
(
G(Z,U )

)
= �χc

(
G(Z,U )

)� = 4. �
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