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WEAK UNIVERSALITY THEOREM
ON THE APPROXIMATION OF ANALYTIC
FUNCTIONS BY SHIFTS
OF THE RIEMANN ZETA-FUNCTION
FROM A BEATTY SEQUENCE

ATHANASIOS SOURMELIDIS

ABSTRACT. In this paper, we prove a discrete analogue of Voronin’s early
finite-dimensional approximation result with respect to terms from a given Beatty
sequence and make use of Taylor approximation in order to derive a weak uni-
versality statement.

Communicated by Werner Georg Nowak

1. Introduction

Let s = 0 + it € C (where 0 = Re(s) and ¢t = Im(s)) and ((s) the Rie-
mann zeta-function. This function is usually defined first on the half-plane
{s : Re(s)>1} by the formula

1
s)=Q —
n=1
and then extended to a meromorphic function on the whole complex plane, with
one simple pole at s = 1 and no other singularity.

In 1914, H. Bohr and R. Courant [3] proved that, for any op € (%,1)
the set )
{C(og + i) : T € R}

is dense in C. In the next year Bohr [2] proved that the same result holds for
log((og + iT). These results are called denseness theorems.
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Bohr’s line of investigations appears to have been almost totally abandoned
for some decades. Only in 1972, S.M. Voronin [8] obtained some significant
generalizations of Bohr’s denseness result.

THEOREM 1. Let m be a natural number and h a positive real number. For any
fixed numbers s1,...,Sm with % < Re(sk) <1 for1 <k <m and sx # s¢ for
k # £, the set

{(¢(s1 +inh),((s2 +inh), ..., ((sm +inh)) : n € N}

is dense in C™. Moreover, for any fived number sy in the strip 1/2 < o < 1,
the set L
{(¢(so +inh), ¢ (so +inh),..., ¢V (sg +inh)) : n € N}

1s dense in C™.

However, Voronin did not stop there and in 1975 proved a remarkable uni-
versality theorem for {(s) which states, roughly speaking, that any non-vanishing
analytic function can be approximated by certain purely imaginary shifts of the
zeta-function in the critical strip.

THEOREM 2. Let 0 < r < 1/4 and suppose that g(s) is a non-vanishing con-
tinuous function on the disk |s| < r which is analytic in the interior. Then,
for any e > 0,

1
lim inf —meas {T € [0,7T] : max
T—oo T |s|<r

C<s+2+i7> —g(s)

<5}>0.

Voronin called his universality theorem the theorem about little disks.
A. Reich [7] and B. Bagchi [I] improved Voronin’s result significantly in re-
placing the disk by an arbitrary compact set in the right half of the critical strip
with connected complement and they even obtained a discrete analogue of it.

THEOREM 3. Suppose that K is a compact subset of the strip 1/2 < Re(s) < 1
with connected complement, and let g(s) be a non-vanishing continuous function
on K which is analytic in the interior of K. Then, for any e > 0 and any h > 0,

lﬂiiéf %card {n eNN(0,N]: Isne%z{K(s +inh) — g(s)] < 5} >0.

We note that Theorem 3 clearly implies both parts of Theorem 1 (except of
Re(sp) = 1), since the truncated Taylor series of the target function g(s) can
be approximated by the truncated Taylor series of a certain shift of the zeta-
function. Although Theorem 1 does not suffice to prove Theorem 3, we can derive
from it a weak form of universality of the zeta-function as it was first indicated
by R. Garunkstis, A. Laurinc¢ikas, K. Matsumoto,J. Steuding
and R. Steuding [5].
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The aim of this note is to replace the arithmetical progression (nh),ey in
Theorem 1 by the sequence (|na|h),en with a fixed irrational number a > 0.
Here |x| denotes the largest integer which is less or equal to = and for given
a > 0, the sequence (|na|)qen is called Beatty sequence. We will consider only
the case o > 1 since for o < 1 the discrete terms of the Beatty sequence is all
the natural numbers and thus we get Theorem 1. Also, h will not be a random
positive number but a number belonging to

where L(a) N[0, +00),

h h
L(a)= {h eER:1,a 1, 2—1np1, 2—1np2, ... are linearly independent over Q} .
T T

We will show later on that L(a) N [0, +00) # () for every irrational number «.

Now, using the same arguments as Voronin did in [§], we will prove the
following

THEOREM 4 (Main theorem). Let m be a natural number and o > 1 an irrational
number. Let also sg, S1, ..., Sm be fived numbers with

1
3 <Re(sp) < 1 for 0<k<m and sp#s¢ for k#(.

Then, for every h € L(a) N[0, 400), the sets

{(¢(s1 +ilnalh),((s2 +ilnalh),...,{(sm +ilnah)) : n € N}

and
{(¢(s0 +i|nalh), (s + i|nalh),. .. LD (50 + ilnah)) :n € N}

are dense in C™,

Combining the preceding theorem and the method introduced in [5], we will
also derive

THEOREM 5 (Weak Universality). Let o9 € (1/2,1], g : K = D(sg,r) — C
continuous and analytic in the interior of K, and o > 1 irrational. Then, for
every h € L(a) N[0, 400) and for every e > 0, there exists

n=n(e,h) €N and &=10(,h)e(0,1)
such that

Jmax (G (s + ilnafh) — g(s)] <<
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2. Uniform distribution mod 1
and a set of full Lebesgue measure

Part of the proof that Voronin gave for Theorem 1 and that we will simi-
larly give for Theorem 4, relies on the theory of uniformly distributed sequences.
A beautiful monograph on this theory is [6]. The definition, theorems and corol-
laries that are stated below can be found there. But before that we introduce
some notation. If x = (z1,...,7,) € R’, then {x} = ({z1},..., {x¢}). Here {z;}
denotes the fractional part of the real number z;.

DEFINITION 1. A sequence of points (x,)nen belonging to RY is said to be
uniformly distributed mod 1 (u.d. mod 1) in R? if for every box B = I} x - - x I
in [0,1]¢ (i.e., a cartesian product of intervals), the relation

<n< :
lim {1<n<N:{x,}€ B}
N—o0 N

= |I1||I2] ... |L¢| = meas(B)
holds.

One of the many advantages when dealing with u.d. mod 1 sequences is a use-
ful connection between sums and integrals, as the next theorem states.

THEOREM 6. A sequence (X, )nen 5 u.d. mod 1 in R if and only if for every
continuous complez-valued f on [0,1]%, the relation

holds. n=1 [0,1]¢

Proof. For the proof, see [6], Chapter 1, Theorem 6.1. In fact, the condition
of f being continuous can be relaxed to that of both Ref and Im f being Riemann
integrable. g

Although the multi-dimensional definition complicates somewhat the study
of whether a sequence is u.d. mod 1 or not, there exists a theorem that allows
us to induce the process in the one-dimensional case.

THEOREM 7. A sequence (X, )nen 45 u.d. mod 1 in R if and only if for every
lattice point k € Z*, k # 0, the sequence of real numbers ((k,%,))nen is u.d.
mod 1 in R. Here (-} denotes the inner product as it is usually defined on the
vector space RE.

Proof. For the proof, see [0], Chapter 1, Theorem 6.3. (]
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COROLLARY 1. Let (0)ren be a sequence of real numbers such that 1,01, 0s, . ..
are linearly independent over Q. Then, for any £ € N and any ki,...,k; € N
pairwise distinct, the sequence (nfy,, ..., nb,),n=1,2,..., is u.d. mod 1 in R¢.

Proof. For the proof, see [6], Chapter 1, Example 6.1. ([l

It is desirable to substitute n from the above corollary with [na| for given
irrational & > 1. D. Carlson [4] obtained a necessary and sufficient condi-
tion for that to happen in the one-dimensional case, and with the assistance
of Theorem 7 we will be able to reformulate Corollary 1.

THEOREM 8. For rational «, the sequence (|na0)nen is u.d. mod 1 either for
all irrationals 6 or for no real number 6, depending on whether e £ 0 or o = 0.
If v is irrational, then (|na|@)pen is u.d. mod 1 in R if and only if 1, o, are
linearly independent over Q (or equivalently 1,a~1 0 are linearly independent

over Q).

Proof. For the proof, see [0], Chapter 5, Theorem 1.8. (]
COROLLARY 2. Let « be an irrational number and (0k)ren a sequence of real
numbers. Then, 1,a=%0,,05,... are linearly independent over Q if and only
if for any £ € N and any ky,..., ke € N pairwise distinct, the sequence x, =
(lna|Ok,, ..., [nalbk,), n=1,2,..., is u.d. mod 1 in R’

Proof. The numbers 1,a1 6;,60,,... are linearly independent over Q if and
only if for any /€N, any k1, ..., ks €N pairwise distinct, and any my,...,m¢EZ

not all of them zero, the numbers 1,a~ %m0, + -+ + my0, are linearly in-
dependent over Q. Combining Theorem 7 and Theorem 8, we see that the
latter statement is equivalent to the one saying that for any ¢ € N and any
ki,...,k¢ € N pairwise distinct, the sequence %, = (|nalby,,..., |nab,),
n=1,2,...,is u.d. mod 1 in R’ O

The sequence of numbers that we are interested in is
h
9k22—1npk, k‘=1,2,...,
m

where p;, will denote from here on the kth prime and A > 0. We prove that
for a given irrational « there exists h > 0 such that the necessary condition
of Corollary 2 for the aforementioned sequence is fulfilled. In fact we prove the
existence of a lot such h.

THEOREM 9. Let a be an irrational number and

h h
L(o)= {h €ER:1,a}, 2—1np1, 2—1np2, ... are linearly independent over Q} .
T T
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The set L(«) has full Lebesgue measure in R, i.e., meas(R \ L(«)) = 0.

Proof. Let B=R\ L(a) and h € B. Then, the numbers

h h
Lo, —l1 —1 .
y o0 np1, o0 npa,

are linearly dependent over Q and consequently over Z as well. Thus, there exists
integer k > 1 and integers aq, ..., ag, b, c, where a; are not all zeros, such that

h h

ar=Inpy + -+ ap—Inpy = b+ ca™t. (1)
T 0

Putting A = p{*... pi¥, we observe that A € QT \ {1} and we can rewrite () as
hInA = brr + ca” ',
Fix a vector (A,b,c) € (Q* \ {1}) X Z x Z =T. Consider the corresponding set
B(A,b,c) = {h € R: hlnA = br + ca”'7}.

The set B(A, b, ¢) is clearly a singleton (since InA # 0) and thus of measure zero.
Hence, the countable union of singletons

B = |J B(Ab,c)

(A,b,c)el’

is of measure zero. Therefore, its complement R \ B = L(«) has full Lebesgue
measure in R. g

3. Auxiliary lemmas

Before stating the lemmas needed for the proofs of Theorems 4 and 5, we
introduce some notation. Let €2 denote the set of all sequences of real numbers
indexed by the prime numbers in ascending order. Further, define for every finite
subset M of the set of all primes, every w = (wg, w3, ws, ...) € ©, and all complex
numbers s, the truncated Euler product

peM
Obviously, (ar(s,w) is a non-vanishing analytic function of s in the half-plane
0>0. Observe also that for M = {p|,...,p}} and constant s, (p(s,w) can
be treated as a continuous complex-valued function of ¢ variables (wprl Y >wp2>
defined on [0, 1]*. In such cases, where M and s are given, (y;(s,w) will be abbre-
viated as (ar(s,wpy; - .., wyy). Finally, Logz will denote the principal logarithm
of z.
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LEMMA 1. Let so be complex number such that % < Re(s0) < 1 and k € Ny.
If we define Mg = {p1,p2,...,pq} to be the set of the first Q primes and
0=1(0,0,...), then

T

- 1 . k) . 2
lim 1 - ‘ M) (sq + it) — ¢ (50 + —0.
Jim 1;nsupT/ ¢®) (s +it) CMQ(SU it,0)| dt =0

0
Proof. For the proof, see [§], pages 164-166, 168. ([l
LEMMA 2. Suppose that (a1,...,a,) € C™, >0,y € Nand z,,...,1, are
real numbers, and s1,...,Sy, are the numbers in the condition of Theorem 4,

where ITm(sg) > 2 for all 1 < k < m. Then, there exists a finite set of primes
M = {p\,ph,...,p)} and a sequence w € Q such that

M > {pi,....py}, wp,. =xp. and |Ca(sk,w) —ai| <e,
for1<r<yandl <k<m.

Proof. For the proof, see [§], Lemma 11. d

LEMMA 3. Suppose that (ag,...,am-1) € C", e >0,y € N and zp,...,1p,
are real numbers, and s is a number with 5 < Re(so) < 1 and Im(sg) > 2.

Then, there exists a finite set of primes M = {p},p5,...,p}} and a sequence
w € Q such that

k
M > {pi,....py}, wp, =zp, and |(](V[)(so,w)—ak\<€,
fori<r<yandl <k<m.

Proof. For the proof, see [§], Lemma 12. d

REMARK 1. Note that the condition for the imaginary parts of the complex
numbers in Lemma 2 can be removed:

Proof. Let the assumptions of Lemma 2 hold without the restriction of the
imaginary parts. There exists a number ¢ > 0 such that Im(sg) + 2m¢ > 2 for
1 <k <m. According to Lemma 2, for 7, = x,, —clnp,...,Z,, =z, —clnpy,
there exists a finite set of primes M and @ € 2 such that

M > A{pi,....py}, @p. =7Tp, and |[Cum(sk + 2mic,0) —ay| < €.
forl<r<gyand1<k<m.
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Taking w € to be wy, =w,+clnp for all primes p, we observe that for 1 <k <m,

N |
Crv (s + 2mic, @) = H (1 — M)

e pskF2mic
10 (1 B eXp(fZWi(po +Clnp)>_1
pEM p
_ H (1 B exp(27riwp)>_1
peEM p
= Cu (K, W),
and of course, wy, = zp, for 1 <r <y. O

REMARK 2. The same result as above can be obtained similarly for Lemma 3,
since to prove it Voronin showed that the set of points

Ay = (LogCM(so,w), [Log Car(s0,w)]s - -, [LogﬁM(so,w)](m_1)> com

is dense in C™ whenever (M, w) runs through all possible finite sets of primes M
and w € Q with the requirements M O {p1,...,p,} and w, =z, for1 <r <y.

LEMMA 4. Let to,t1,...,tr be real numbers, where tg < t1 < --- < tg. If G(t)
is a complex-valued function which is defined and continuously differentiable on
the interval [to, tRr], then

R tr tr 3 tr 3
1

e < gﬁG(t)th 12 ﬁG(t)th ﬁG’(t)th :

r=1 to to to
where 5 - .

= By [t — ]

Proof. For the proof, see [§], Lemma 6. d
LEMMA 5. Let s1,...,s; be numbers such that Re(s;) >0 forj=1,...,¢, and
m € N. Then, for every e > 0, there exists an N = N(g) € N such that for every
set S of prime numbers greater than py, everyk =0,1,...,m, everyj =1,...,¢

and every w € (), the inequality

(Cs(sj,w) — M| <e
holds.
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Proof. Let ¢ > 0 and
0<t0<r0<1rélj1r§1£Re(sj).

If we set
P |
¢'= min —,
0<k<m k!

then there exists a 0 = d(¢) < 1 such that |e* — 1| < &’ for every |z| < J. Since
the series

converges, there exists an N = N(¢) such that

= 1
nz;vp%1<

for every o > ty. Now let S be a set of prime numbers greater than py and
w € Q. Observe that whenever |z| < % , one can obtain

N S

142 142

[Log(1+ 2)| = /d—w < / [duw] < 2|z].
/ / |w]

w

Keeping that in mind and taking advantage of the fact that for every Re(s) > to
and n > N :

. -1
‘(1 B exp(—2mwpn)> .

Dy,

exp(—2miw,, )
ps — exp(—2miw,, )
1 ) 1

< < =,
pg—1 2 2

IN

we can estimate

exp(—2miw,) -1 exp(—2miw,) -1
ZLOg <1 _ M) < Z Log (1 _ u) ‘
p? p*

peS
. -1
< 22 (1 B exp(2mwpn)> .
Pr
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Thus, for every Re(s) > tg,

o -1
ICs(s,w) — 1| = |exp ZLog <1M> -1 <€

peS p
All inequalities
’(CS(Sjaw) - 1)(k)‘ <e,

fork=0,...,mand j=1,...,¢ can now be proved by computing the Cauchy’s
estimates of (g(s,w)—1 on the disks D(sj,79) C {s: Re(s) > to},forj=1,...,¢,
respectively. ([l

4. Proofs of Theorem 4 and Theorem 5

Proof of Theorem [ We prove the second part of Theorem 4 since the first
part can be shown similarly. Let sg be a complex number with % < Re(sp) <1,
a > 1 irrational and h € L(a) N [0, +00), where L(«) is the set defined in the
first section and in Theorem 9.

To prove the theorem it suffices to show that any vector (ag, ..., any,—1) € C™
can be approximated arbitrarily close by the vector

(g(so Filnalh), ..., ¢ (s + i[najh))

with a suitable natural number n. We fix any (ag, ..., ay,—1). By Lemma 3, for
every € > 0 and every y € N, there exists (ar(so,w) such that M D {p1,...,py},
wp, =0for 1 <r <y, and for k=0,...,m —1 we have

‘C](\;)(so,w)fak‘ <e. (2)

Let M = {p},...,p}}. By the continuity of (s (s0,wp,; - - -, wp, ) as a function of £
variables and (&), in [0, 1] there exists a subbox K with meas(K) > 0 such that
for k=0,...,m — 1 all the points (z,, ..., ,,) belonging in K satisfy

‘C](\I;)(SOJ"P'N ...,xpz)fak‘ < 2e. (3)

N
Let 3, denote summation over those n € [1, N]NN for which

(). )
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We consider the expression
1 N , m—1 9
k . k .
Ay = N; kE:O ‘C( )(so +i|nalh) — 1(\4)(50 +z[najh,0)‘ .
We choose @ larger than any p € M and we define Mg = {p1,p2,...,pqo} to be
the set of the first @ primes. Then,
N m—1

%Z [¢®)(so + ilmah) — ¢{5) (s0 + ilnah, 0)
n=1 k=0

‘ 2

=

N m—
2 & ) 2
NZ (¢85 (s0 + ilnah, 0) = ¢ (s0 + ilnal,0)| . (4)
n=1 k=0
We denote the first double sum by S7 and the second by S;. Firstly, we esti-
mate Sy. We make use of Leibniz’s formula
k
k .
i, = = au(Gauguan = 1% = 3= (M) Cargrar — D*,
j=0
Applying the Cauchy-Schwarz inequality, we obtain

2

(P < (kv

i -
Hence, putting in S5 the summation over n on the inside, we get
Sy < Z k -+ 1)2( >Z ‘g (so + i|na)h, 0) x

(Cargaa (30 -+ ilnalh, 0) = )ED| . (5)

So it suffices to estimate the sums of the form
2
Z ’g(” s0 +i|na)h, 0)(Caro\ar(s0 + i[na)h,0) — 1)(’“_7)‘ :

Note that if MQ \ M = {p{,...,p4_}, then a simple computation leads to
) hlnp’ hlnp),
o 50 nah,0) = G (s, { 2 b o { P e )
and

) hlnp!/ hlnpY,
CMQ\M (so + i|nalh,0) = CMQ\M (507 { 27T1 naJ} e {#Ln(ﬂ .
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We define F : [0,1]9 — C to be of the form

F(wp,,... Wpo ) = ‘C](&) (so,wprl, o ’wpé)
(k—3)|?
X (CMQ\M (507‘%’1’7 e 7“’%4) - 1)

whenever (wy,...,w,,) € K, and zero otherwise. If we set

1 1
Xp = <h b |nal, . h;po LnaJ) , neN,
T

Y

then
Sei= > F({xa}) = Y F({xa}).

The last equality is true if we consider the definitions of 3>" and F. Now recall
that h € L(«). Thus, according to Corollary 2, the sequence (x,,)nen is u.d. mod
1 in R, Using Theorem 6, we obtain

Jim %Sk = lim —ZF ({xn}) = /F(x)dx:/ /F(x)dx

[0,1]€ K [0,1]9*
_ (J) 2d d
- C 807wp'17"~7wp’£) (Upll wplz
K
(k—3)
X (CMQ\M (303 (.Up/l/’ .. pr Z) — ].) dwplll .. dwplcéfz .
(0,197

(6)

By (@), the first integral is bounded by (|a;| + 2¢)*meas(K), and the second
integral, in view of Lemma 5, approaches zero uniformly in @ as y increases.
Hence, by (B]) and (@), we may choose y sufficiently large so that for every @
larger than any p € M, we can find an Ny = No(Q) with the property

Sy < Nmeas(K)%3 for N > Ny. (7)
We estimate Sy,
m-1 N -
S1 = ZZ ‘C(k) So + i|nah) — gMQ (so +i|nalh, 0)‘ :Zs;f .
k=0n=1 —
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Let k € {0,...,m — 1}. We apply Lemma 4 for

G(t) = (W (so + ith) — (i) (so + ith, 0) :

;SZ ([na)h)?

Nah Nah 5 Nah 2
1
< 2 2 !
MZS/W@””z(/WM“ /m (t)[2at
0 0

Using Lemma 1, we may choose () sufficiently large such that

3
&<Nmmm%fMN2M:M@) (8)

Consequently, by @), (@) and (8), we have
An < meas(K)e® for N > Ny = Nao(Q).

Since the sequence

S R )

. . . . N
is u.d. mod 1 in RY, Ay contains ~ Nmeas(K) terms in . _, as N — oo.
Hence there exists an n such that

Z ‘C(k) 50+ZL’]’LO[Jh) C](;)(SO«FZLTL@J]%O)F < {;‘37

hlnp| hlnp,
ﬂ[naj e ﬂLnod € K
2m 2m
Combining ([B]) and (@) we showed that there exists an n such that

’Q(k)(so +ilnalh) — ak‘ < 3e,

fork=0,....m—1

The proof of the first part of Theorem 4 consists of the same arguments as
we used until now. Instead of Lemma 3 we use Lemma 2, and there is no need
to apply Leibniz’s formula and the Cauchy-Schwarz inequality. g
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Proof of Theorem Bl Let h € L(a) N[0, 4+00) and € > 0. Since the Taylor
expansion of g is valid for all s € K, there exists an N = N(e) such that

() (
max g(s) — Zg (s0) - o)k < (10)

5
3
From Theorem 4, for the vector (g(so),...,g" " (so)) and & > 0, there exists

a sequence (ng)gen such that for every £ =1,2,... and every k =0,...,N — 1,

k!

(k) ; —g® I = i -
‘C (so +i|ne|h) — g (so)‘ <& =gy ocmin

We choose an ny, = ny, (¢, h) such that 1 ¢ K + i|ng,a|h. Then,

() (50 + aneoaJh g(k .
SR Z k! Z —s0)| =
seK =0 k! -3

The choice of ng, allows us to represent ¢ in the disk K + i|ng,«|h as the sum
of a Taylor series centered at sg + | ng, o h,

W) (s 1| ng,a
Clo -+ ilngaln) = Yoot il gy

k=0

for all s € K. If
M = M(e,h)= mez}?(K(s—l—iLngoaJhﬂ and 0 € (0,1),

then, using Cauchy’s estimates, we get

‘w(sO tilngalh) ] MK s = ol

k
k! - rk k! < M7,

for all s € D(sg,dr). Hence,

N-1 )
‘C(S_"ZLRZQO[Jh) _Z((k)<30 +kZ'Ln50aJh> (S—So)k _

k=0

() (s0 + g, h) o

Z;V s s <My (12)
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for all s € D(sg,dr). Combining relations (I0), (1) and ([I2)), we find

s+ ilnrgalh) —g(s)] < M+ S+
1-6 3 3
for all s € D(sg,6r). Now choose § = (¢, h) € (0,1) such that
e
1-6 3
This is possible since for the continuous function
F:(0,1) >R with F(t)= Mlt—z_vt, te(0,1),

we have

lim F(t) =0 and lim F(¢) = +o0.
t—1

t—0

We thus have shown

max . (s +ilngalh) —g(s)] <&

and this completes the proof. O

1]
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