Construction of Uniformly Distributed Linear Recurring Sequences Modulo Powers of 2

Open access

Abstract

The aim of the present paper is to provide the background to construct linear recurring sequences with uniform distribution modulo 2s. The theory is developed and an algorithm based on the achieved results is given. The constructed sequences may have arbitrary large period length depending only on the computational power of the used machines.

[1] BRENT, R. P.—ZIMMERMANN, P.: The great trinomial hunt, Notices of the American Mathematical Society 58 (2011), 233–239.

[2] FOLLÁTH, J.: Construction of Pseudorandom Binary Sequences Using Additive Characters Over GF (2k), Periodica Mathematica Hungarica 57 (2008), 73–81.

[3] FOLLÁTH, J.—HUSZTI, A.—PETHŐ, A.: DESignIn Asymmetric Authentication System, Proceedings of ICAI’07 7th International Conference on Applied Informatics 1 (2007), 53–61.

[4] HERENDI, T.: Uniform distribution of linear recurring sequences modulo prime powers, Finite Fields and Applications 10 (2004), 1–23.

[5] HUSZTI, A.: A Secure Electronic Voting Scheme, Periodica Polytechnica Electrical Engineering 51 (2007), 141–146.

[6] HUSZTI, A.—PETHŐ, A.: ASecure ElectronicExamSystem, Publicationes Mathematicae Debrecen 77 (2010), 299–312.

[7] KNUTH, D. E.: The Art of Computer Programming. Vol. 2. Addison-Wesley, 1973.

[8] LIDL, R.—NIEDERREITER, H.: Introduction to finite fields and their applications. Cambridge University Press, 1986.

[9] MATSUMOTO, M.—NISHIMURA, T.: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Modeling and Computer Simulation 8 (1998), 3–30.

[10] MAUDUIT, C.—SÁRKÖZY, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol, Acta Arith. 82 (1997), 365–377.

[11] MENEZES, A.—VAN OORSCHOT, P.—VANSTONE, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton new York London Tokyo, 1996.

[12] NIEDERREITER, H.: Distribution of Fibonacci numbers mod 5k, Fibonacci Quart. 10 (1972), 373–374.

[13] NIEDERREITER, H.: Pseudo-random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992.

[14] NIEDERREITER, H.—SHIUE, J.: Equidistribution of linear recurring sequences in finite fields, Indag. Math. 39 (1977), 397–405.

[15] NIEDERREITER, H.—SHIUE, J.: Equidistribution of linear recurring sequences in finite fields. II, Acta Arith. 38 (1980), 197–207.

[16] TURNWALD, G.: Gleichverteilung von linearen rekursiven Folgen, Sitzungber., Abt. II, Oesterr. Akad. Wiss., Math.-Naturwiss. 193 (1985), 201–245.

[17] TURNWALD, G.: Uniform distribution of second-order linear recurring sequences, Proc. Amer. Math. Soc. 96 (1986), 189–198.

Uniform distribution theory

The Journal of Slovak Academy of Sciences

Journal Information


Mathematical Citation Quotient (MCQ) 2017: 0.30

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 9
PDF Downloads 69 69 6