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NOTES ON THE DISTRIBUTION

OF ROOTS MODULO A PRIME OF A POLYNOMIAL

Yoshiyuki Kitaoka

ABSTRACT. Let f(x) be a monic polynomial in Z[x] with roots α1, . . . , αn.

We point out the importance of linear relations among 1, α1, . . . , αn over rationals
with respect to the distribution of local roots of f modulo a prime. We formulate
it as a conjectural uniform distribution in some sense, which elucidates data
in previous papers.

Communicated by Shigeki Akiyama

In this note, a polynomial means always a monic one over the ring Z of integers
and the letter p denotes a prime number, unless specified. Let

f(x) = xn + an−1x
n−1 + · · ·+ a0 (0)

be a polynomial of degree n. As in the previous papers, we put

SplX(f) := {p ≤ X | f(x) is fully splitting modulo p}
for a positive number X and Spl (f) := Spl∞(f). In this note, we require the
following conditions on the local roots r1, . . . , rn (∈ Z) of f(x) ≡ 0 mod p for
a prime p ∈ Spl (f) :

f(x) ≡
n∏

i=1

(x− ri) mod p, (1)

0 ≤ r1 ≤ r2 ≤ · · · ≤ rn < p. (2)

We can determine local roots ri uniquely with this global ordering. If f is ir-
reducible and of deg(f) > 1, and p is sufficiently large, then (2) is equivalent
to 0 < r1 < · · · < rn < p. Here, we consider two types of distribution of local
roots ri of f .
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Before stating them, let α1, . . . , αn be roots of a polynomial f in (0) and
suppose a linear relation

n∑
i=1

miαi = m (mi,m ∈ Q). (3)

Let us give three typical examples of a linear relation (3) among roots:

The first example is n∑
i=1

αi = tr (f) (:= −an−1).

We call a linear relation (3) trivial if m1 = · · · = mn, otherwise non-trivial.
A trivial relation is reduced to the above. We know that for an irreducible
polynomial f, there is only a trivial relation if the degree n is prime or the
Galois group Gal (Q(α1, . . . , αn)/Q) is Sn or An (n ≥ 6) as a permutation group
of {α1, . . . , αn} (Proposition 2).

The second is a reducible polynomial

f(x)=g(x)h(x) with 1<deg g<deg f.

There is a non-trivial relation
∑

βi = tr (g) for roots βi of g, since a set of roots
of g is a proper subset of roots of f.
The third is a decomposable polynomial, that is

f(x) = g
(
h(x)

)
with 1 < deg h < deg f.

For a root β of g(x) = 0, a set of solutions γi of h(x) = β is a proper subset
of roots of f(x), and we have a non-trivial relation

∑
γi = tr (h−β) = tr(h) ∈ Z.

Some other examples are given in [3] and in the text.

If the degree of f is less than 6, there is no non-trivial linear relation except
the above two types, as shown below. In case of degree 6, other non-trivial linear
relations appear.

The first subject is a kind of uniformity: Let f be a polynomial in (0) of
degree n and put

D̂n := {(x1 . . . , xn) ∈ [0, 1)n | 0 ≤ x1 ≤ · · · ≤ xn < 1,

n∑
i=1

xi ∈ Z} (4)

and for a set D ⊂ [0, 1)n with D = D◦

PrD(f,X) :=
#{p ∈ SplX(f) | (r1/p, . . . , rn/p) ∈ D}

#SplX(f)
,

where local roots ri satisfy properties (1), (2).

We expect, under an assumption that a polynomial f has only a trivial linear
relation (3) among roots.
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PrD(f) := lim
X→∞

PrD(f,X) =
vol (D ∩ D̂n)

vol (D̂n)
. (5)

The set D̂n is parametrized by x1, . . . , xn−1, since xn equals �∑i<n xi	−
∑

i<n xi,

and the volume of the projection Dn of D̂n to a hyperplane Rn−1 defined by
xn = 0 is 1/n!. Here, �x	 denotes an integer satisfying x ≤ �x	 < x+1 for a real
number x.

In case of tr (f) = 0, we may suppose that D is limited to a domain on

D̂n by virtue of (r1/p, . . . , rn/p) ∈ D̂n, and it is easy to see that the right-
-hand side of (5) is vol

(
pr(D)

)
/(1/n!), where pr is a projection (x1, . . . , xn) 
→

(x1, . . . , xn−1).

In general, a polynomial has non-trivial linear relations among roots, and
suppose that a system of linear equations

n∑
i=1

mj,i αi = mj (j = 1, . . . , t) (6)

is a basis of all linear relations (3) restricted to mj,i,mj ∈ Z. If f is irreducible,
then we see (

∑
i mj,i)tr (f) = nmj . We fix a numbering of roots αi of f. For a

prime p ∈ Spl (f), there is a permutation σ ∈ Sn (dependent on p) such that
local roots ri satisfy induced relations (cf. Proposition 1)∑

i

mj,i rσ(i) ≡ mj mod p (1 ≤ ∀j ≤ t) (7)

which implies
∑

i mj,i · rσ(i)/p − mj/p ∈ Z. Let x = (x1, . . . , xn) ∈ [0, 1]n be
an accumulation point of (r1/p, . . . , rn/p) with the same permutation σ above;
then we see that x is in the closure of

D(f, σ) :=

{
(x1 . . . , xn) ∈ [0, 1)n

∣∣∣∣ 0 ≤ x1 ≤ · · · ≤ xn < 1,∑
i mj,i xσ(i) ∈ Z for 1 ≤ ∀j ≤ t

}
.

If x is not in D(f, σ), then xn is equal to 1 and we neglect the case since we
are concerned with the volume. We note that the set D(f, σ) depends on a
numbering of roots αi and may be the same for distinct permutations.

If f has only a trivial linear relation, then D(f, σ) is nothing but D̂n.

Put

SplX(f, σ) := {p ∈ SplX(f) |
∑
i

mj,i rσ(i) ≡ mj mod p (1 ≤ ∀j ≤ t)}.

If Spl∞(f, σ1) ∩ Spl∞(f, σ2) is an infinite set, then Spl∞(f, σ1) and Spl∞(f, σ2)
are equal except a finite set. The following is a generalization of Expectation 1.
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PrD(f, σ) : = lim
X→∞

#{p ∈ SplX(f, σ) | (r1/p, . . . , rn/p) ∈ D}
#SplX(f, σ)

=
vol

(
D ∩D(f, σ)

)
vol

(
D(f, σ)

) (8)

for a permutation σ with dimD(f, σ) = n − t, and vol is the volume as a set
of dim being n − t. With respect to the density of a set Spl (f, σ) of primes,
our observation is

���������	
 1′′
�

lim
X→∞

#SplX(f, σ)

#SplX(f)
= c−1 · vol(D(f, σ)

)
,

where the constant c is independent of σ.

We give a remark on the numbering of roots : Since (6) and (7) are equiva-
lent to

∑n
i=1mj,σ−1(i)ασ−1(i) = mj and

∑n
i=1mj,σ−1(i)ri ≡ mj mod p, we may

assume that σ in Expectation 1′, 1′′ is the identity for any numbering of roots
with replacing “c is independent of σ” by “c is independent of the numbering of
roots of f” in Expectation 1′′.

We note that for a sufficiently large prime p, we see that 0 < r1+an−1/n, rn+
an−1/n < p, and then

(
(r1 + an−1/n)/p, . . . , (rn + an−1/n)/p

) ∈ D(f, σ) if
f is irreducible and that a point (r1/p, . . . , rn/p) is on D(f, σ) if and only if
an−1 = 0. Is it possible to reduce the problem to the case of trace being 0, using
g(x) := nnf

(
(x − an−1)/n

)
= xn + 0 · xn−1 + · · · ? The relation between local

roots Ri of g(x) and ri of f(x) is Ri ≡ nrσ(i) + an−1 mod p for a permutation σ
dependent on p.

The second subject is as follows.
For given integers L (>1), Ri with 0≤Ri<L and a prime p ∈ Spl (f), we require
a following congruence condition besides (1), (2) on the local roots r1, . . . , rn
of f(x) ≡ 0 mod p :

ri ≡ Ri mod L (1 ≤ ∀i ≤ n). (9)

We put

PrX(f, L, {Ri}) := #{p ∈ SplX(f) | (1), (2), (9)}
#SplX(f)

(10)

and
Pr (f, L, {Ri}) := lim

X→∞
PrX(f, L, {Ri}). (11)

Although the existence of the limit is not proved in this case either, there is no
data to deny it. By putting

Rf := an−1 +

n∑
i=1

Ri and d := (Rf , L),
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our second expectation is as follows:

For a polynomial f of degree ≥ 2 with only a trivial relation (3)

���������	
 2�

Pr (f, L, {Ri}) := 1

Ln−1

∑
K, q

En(K)

[Q(ζL) : Q(f) ∩Q(ζL/d)]
, (12)

where K runs over a set of integers satisfying

1 ≤ K ≤ n− 1, (K,L) = d,

and q ∈ (Z/LZ)× satisfy the conditions{
Rf ≡ Kq mod L (⇔ Rf/d ≡ K/d · q mod L/d),

[[q]] = [[1]] on Q(f) ∩Q(ζL/d).

Let us explain notations:En(k) is the volume of the set {x∈[0, 1)n−1 |�x1+ · · ·
· · · + xn−1	 = k}. En(k) is also defined as En(k) := A(n − 1, k)/(n − 1)!,
using Eulerian numbers A(n, k) (1 ≤ k ≤ n) defined recursively by

A(1, 1) = 1, A(n, k) = (n− k + 1)A(n− 1, k − 1) + kA(n − 1, k).

ζL is a primitive Lth root of unity, and Q(f) is a Galois extension of the rational
number field Q generated by all roots of f. For an abelian field F in Q(ζc) and
an integer a relatively prime to c, [[a]] denotes an automorphism of F induced
by ζc → ζac .

Expectations 1, 2 are supported by numerical data by computer for irreducible
and indecomposable polynomials of degree < 6 ([6],[7]), which are polynomials
with only a trivial linear relation among roots. Expectation 2 fails for some
polynomials of deg f = 6 with non-trivial linear relations.

Let us refer to a relation with a one-dimensional distribution of ri/p (i =
1, . . . , n) : Let f be a polynomial of degree n with only a trivial linear relation
among roots. Given number a∈ [0, 1], putDi,a :={(x1, . . . , xn) ∈ [0, 1)n | xi ≤ a}.
Then we see

lim
X→∞

∑
p∈SplX(f) #{i | ri/p ≤ a, 1 ≤ i ≤ n}

n ·#SplX(f)

= lim
X→∞

∑
p∈SplX(f) #{i | (r1/p, . . . , rn/p) ∈ Di,a}

n ·#SplX(f)

=
n∑

i=1

PrDi,a
(f)/n

=

n∑
i=1

vol (Di,a ∩ D̂n)

n · vol (D̂n)
(by Expectation 1)
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which is equal to a, as far as we check approximately by the Monte Carlo method
(definitely for n = 2, 3), that is we have the equi-distribution of ri/p.

Lastly, let us give a relation between Expectation 1 and a series of observations
in the references. Let a polynomial f of degree n have only a trivial linear relation
among roots, and put, for an integer k

Dk := {(x1, . . . , xn) ∈ [0, 1)n | �x1 + · · ·+ xn−1	 = k}.
Then, under Expectation 1, we have

lim
X→∞

#{p ∈ SplX(f) | (r1 + · · ·+ rn − tr (f)
)
/p = k}

#SplX(f)

= lim
X→∞

#{p ∈ SplX(f) | �r1/p+ · · ·+ rn−1/p	 = k}
#SplX(f)

= lim
X→∞

#{p ∈ SplX(f) | (r1/p, . . . , rn/p) ∈ Dk}
#SplX(f)

(= PrDk
(f))

=
vol ({(x1, . . . , xn) ∈ D̂n | �∑n−1

i=1 xi	 = k})
vol (D̂n)

(by Expectation 1)

=
vol ({(x1, . . . , xn) ∈ [0, 1)n | x1 ≤ · · · ≤ xn,

∑n
i=1 xi = k})

vol (D̂n)

=
vol ({(x1, . . . , xn) ∈ [0, 1)n |∑n

i=1 xi = k})
n! · vol ({(x1, . . . , xn) ∈ [0, 1)n | x1 ≤ · · · ≤ xn,

∑n
i=1 xi ∈ Z})

= vol

({
(x1, . . . , xn−1) ∈ [0, 1)n−1 |

⌈
n−1∑
i=1

xi

⌉
= k

})
(projected to Rn−1)

= En(k),

which elucidates most of numerical observations in previous papers. We note that
the last vol is the usual volume on Rn−1, but others are the one on hyperplanes
defined by n∑

i=1

xi ∈ Z in Rn.

We discuss a linear relation among roots in the first section, and in the second
section, we correct insufficient data given in [6] with respect to (12) and add new
ones.
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When we refer to an explicit value of a density, it is an approximation by
computer, unless specified.

1. Linear relation among roots

Let f(x) be a polynomial f in (0) of degree n with roots αi (i = 1, . . . , n) and
suppose a linear relation (3). We may suppose that m = 0 in (3) to discuss the
non-triviality of a linear relation, if necessary. Because, if tr (f) = −an−1 = 0
holds, then taking traces, we have nm = (

∑
imi)tr (f) = 0, hence m = 0.

Otherwise, we have
∑

Miαi = 0 for Mi := mi + m/an−1. The non-triviality
of (3) is unchanging by this operation.

Just to make sure, let us see a relation between global relations of roots αi

and local relations of roots r′i of f(x) ≡ 0 mod p.

�	�	����	
 1� Let f(x) be a polynomial of degree n with roots α1, . . . , αn and
suppose that it has no multiple roots, and let gj(x1, . . . , xn) (j = 1, . . . , t) be
polynomials in Z[x1, . . . , xn].

If there are global relations gj(α1, . . . , αn) = 0 (j = 1, . . . , t), then there are
roots r′i of f(x) ≡ 0 mod p satisfy gj(r

′
1, . . . , r

′
n) ≡ 0 mod p (j = 1, . . . , t) for

p ∈ Spl (f).

Conversely, if roots r′i of f(x) ≡ 0 mod p satisfy gj(r
′
1, . . . , r

′
n) ≡ 0 mod p

(j = 1, . . . , t) for infinitely many primes p ∈ Spl (f), then there is a permutation
σ such that gj(ασ(1), . . . , ασ(n)) = 0 (j = 1, . . . , t).

P r o o f. Put K = Q(f) and take a prime p ∈ Spl (f). K is a Galois extension
and a prime p is fully splitting in K.

First, assume gj(α1, . . . , αn) = 0 (j = 1, . . . , t) : For a prime ideal p of K over p,
take a rational integer r′i satisfying αi ≡ r′i mod p, which implies gj(r

′
1, . . . , r

′
n) ≡

0 mod p, hence gj(r
′
1, . . . , r

′
n) ≡ 0 mod p. Let us see that r′1, . . . , r

′
n are roots

of f(x) ≡ 0 mod p. We see 0 = f(αi) ≡ f(r′i) mod p, hence f(r′i) ≡ 0 mod p.
If p is sufficiently large, then we see that αi ≡ αj mod p for i = j, hence
r′i ≡ r′j mod p, that is, r′1, . . . , r

′
n are all distinct roots of f(x) ≡ 0 mod p.

Conversely, suppose that there are infinitely many primes p ∈ Spl (f) such
that gj(r

′
1, . . . , r

′
n) ≡ 0 mod p (j = 1, . . . , t) for roots r′i of f(x) ≡ 0 mod p.

For such a prime, we fix any prime ideal p over p ; then there is a permutation σp

of {1, . . . , n} such that ασp(i) ≡ r′i mod p as above. We take a permutation σ
satisfying σ = σp for infinitely many primes p ∈ Spl (f). For such infinitely many
primes p, we see gj(ασ(1), . . . , ασ(n)) ≡ gj(r

′
1, . . . , r

′
n) ≡ 0 mod p, hence a global

relation gj(ασ(1), . . . , ασ(n)) = 0 (j = 1, . . . , t). �
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We apply this to linear equations gj :=
∑n

i=1mj,ixi − mj (j = 1, . . . , t)
(cf. (6), (7)). The following is a sufficient condition to a polynomial being without
non-trivial linear relation.

�	�	����	
 2� Let f(x) be an irreducible polynomial of degree n. If n is
a prime number p, or the Galois group Gal (Q(f)/Q) is Sn or An (n ≥ 6)
as a permutation group of roots of f, then f has only a trivial linear relation
among roots.

P r o o f. First, suppose that the degree of a polynomial f is a prime p, and let
α1, . . . , αp be roots of f, and suppose a linear relation (3). Adding a trivial rela-
tion

∑
αi = tr (f) to (3) if necessary, we may assume that

∑
mi = 0. The Galois

group Gal (Q(f)/Q) acts faithfully on the set of all roots and contains an element
σ of order p, hence we may assume that

(
σ(α1), . . . , σ(αp)

)
= (α2, . . . , αp, α1).

Then from the assumption (3) follows⎛
⎜⎜⎜⎝
m1 m2 . . . mp

mp m1 . . . mp−1

...
m2 m3 . . . m1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
α1

α2

...
αp

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
m
m
...
m

⎞
⎟⎟⎟⎠ .

Since αi’s are not rational, the determinant of the coefficient matrix of entries
mi vanishes, hence we have

p−1∏
i=0

(
m1 + ζim2 + ζ2im3 + · · ·+ ζ(p−1)imp

)
= 0

for a primitive pth root ζ := ζp of unity, using a formula for cyclic determinant.
By the assumption

∑
mi = 0, we have

m1 + ζim2 + ζ2im3 + · · ·+ ζ(p−1)imp = 0 for some i (0 < i < p),

which implies m1 = · · · = mp, that is, (3) is trivial, since ζi is still a primitive
pth root of unity.

Next, suppose that the Galois group Gal (Q(f)/Q) is the symmetric group Sn.
For any 1 ≤ i < j ≤ n, there is an automorphism σ which induces a transposition
of αi and αj. Hence we have

m =

⎛
⎝∑

k �=i,j

mkαk

⎞
⎠+miαi +mjαj =

⎛
⎝∑

k �=i,j

mkαk

⎞
⎠+miαj +mjαi,

which implies
mi(αi − αj) = mj(αi − αj).

By αi = αj, we have mi = mj, thus (3) is trivial.
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Finally, suppose that Gal
(
Q(f)/Q

)
is the alternative group An and that (3)

is non-trivial. Let us show that coefficients m1, . . . ,mn are mutually distinct,
first. Suppose that m1 = m2 ; acting an even permutation α1 → α2 → α3 → α1

on (3), we have

m1α1 +m2α2 +m3α3 = m−
∑
i>3

miαi,

m3α1 +m1α2 +m2α3 = m−
∑
i>3

miαi,

which imply (m1 −m3)(α1 − α3) = 0, hence m2 = m1 = m3. Considering other
αi (i > 3) instead of α3, we get m1 = m2 = · · · = mn, which contradicts the
non-triviality of (3). Thus coefficients mi are mutually distinct.

Next, considering even permutations:

{α1 ↔ α2, α3 ↔ α4}, {α1 ↔ α3, α2 ↔ α4}, {α1 ↔ α4, α2 ↔ α3},
we get {

m1α1 +m2α2 +m3α3 +m4α4 = m−∑
i>4miαi,

m2α1 +m1α2 +m4α3 +m3α4 = m−∑
i>4miαi,{

m3α1 +m4α2 +m1α3 +m2α4 = m−∑
i>4miαi,

m4α1 +m3α2 +m2α3 +m1α4 = m−∑
i>4miαi,

which imply

(m1 −m2)(α1 − α2) + (m3 −m4)(α3 − α4) = 0,

(m3 −m4)(α1 − α2) + (m1 −m2)(α3 − α4) = 0,

hence (α1 − α2)
2 = (α3 − α4)

2. Similarly, we have (α1 − α2)
2 = (α3 − α5)

2.
Therefore we get

0 = (α3 − α4)
2 − (α3 − α5)

2

= (α3 − α4 + α3 − α5)(α3 − α4 − α3 + α5)

= (2α3 − α4 − α5)(−α4 + α5),

i.e., 2α3 = α4 + α5, similarly, 2α3 = α4 + α6. Thus we have a contradiction

α5 = α6. �

�	�	����	
 3� Let f = x4+a3x
3+a2x

2+a1x+a0 be an irreducible polynomial.
If there is a non-trivial linear relation among roots of f, then f is decomposable,
that is f(x) = g

(
h(x)

)
for quadratic polynomials g(x), h(x).
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P r o o f. Let α1, . . . , α4 be the roots of f. Let G := Gal (Q(f)/Q) be the Galois
group; then it operates faithfully on a set {α1, . . . , α4} and there is a subgroup
of order 4 in G. Noting that for permutations:

σ = (1, 2), μ = (1, 3) ⇒ σμ = μσ,

σ = (1, 2)(3, 4), μ = (2, 3) ⇒ σμ = μσ,

σ = (1, 2)(3, 4), μ = (1, 3)(2, 4) ⇒ σμ = μσ,
we see that:

(i) there is a cyclic permutation σ in G so that

σ : (α1, α2, α3, α4) → (α2, α3, α4, α1),

(ii) there are permutations σ1, σ2 in G so that

σ1 : (α1, α2, α3, α4) → (α2, α1, α4, α3),

σ2 : (α1, α2, α3, α4) → (α3, α4, α1, α2) or

(iii) there are permutations σ1, σ2 such that σ1 (resp. σ2) is a transposition
of α1 and α2 (α3 and α4), respectively.

Suppose that (3) is non-trivial, that is ∃mi = ∃mj , and if a3 = 0 happens,
then considering f(x − 1) instead of f(x), we may assume that a3 = 0 and
furthermore

∑
mi = 0, adding a trivial relation.

First, let us consider

Case (i). By linear equations
∑

miσ
j(αi) = m (j = 0, 1, 2, 3), we have⎛

⎜⎜⎝
m1 m2 m3 m4

m4 m1 m2 m3

m3 m4 m1 m2

m2 m3 m4 m1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
α1

α2

α3

α4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α1 α2 α3 α4

α2 α3 α4 α1

α3 α4 α1 α2

α4 α1 α2 α3

⎞
⎟⎟⎠
⎛
⎜⎜⎝
m1

m2

m3

m4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
m
m
m
m

⎞
⎟⎟⎠ .

Since αi’s are irrational, the determinant of coefficient matrix on mi vanishes,

i.e.,
∏3

i=0(m1 + ζim2 + ζ2im3 + ζ3im4) = 0 for a primitive fourth root ζ := ζ4
of unity. By the assumption

∑
mi = 0, we have

m1 + ζim2 + ζ2im3 + ζ3im4 = 0 for some i = 1, 2, 3,
hence

(i.1) m1 −m3 = m2 −m4 = 0 in the case of i = 1, 3 or

(i.2) m1 −m2 + m3 −m4 = 0 in the case of i = 2.

Case of (i.1), i.e., m1 = m3, m2 = m4 :
The difference of the first row and the second row gives

(m1 −m2)(α1 − α2 + α3 − α4) = 0.
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If m1 = m2 holds, we have a contradiction m1 = · · · = m4. It implies α1 +
α3 = α2 + α4 = −a3/2, hence f(x) = (x2 + a3x/2 + α1α3)(x

2 + a3x/2 + α2α4)
is a polynomial in x2 + a3x/2, that is f is decomposable.

Case of (i.2), hence m1 +m3 = m2 +m4 :
It is easy to see that⎛

⎜⎜⎝
α1 α2 α3 α4

α2 α3 α4 α1

α3 α4 α1 α2

α4 α1 α2 α3

⎞
⎟⎟⎠
⎛
⎜⎜⎝
m1 −m2

m2 −m3

m3 −m4

m4 −m1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0
0
0
0

⎞
⎟⎟⎠ .

By non-triviality (m1 − m2, . . . ,m4 − m1) = (0, . . . , 0), the cyclic determinant
of coefficients matrix vanishes, i.e.,

a3(α1 + ζα2 − α3 − ζα4)(α1 − α2 + α3 − α4)(α1 − ζα2 − α3 + ζα4) = 0.

(i.2.1) Suppose α1+ζα2−α3−ζα4 = 0, i.e., α1−α3 = −ζ(α2−α4). By equations∑
miαi = m and (by acting σ2 on it) m1α3 + m2α4 + m3α1 + m4α2 = m,

we have
(m1 −m3)(α1 − α3) + (m2 −m4)(α2 − α4) = 0,

hence
(
(m1 −m3)(−ζ) +m2 −m4

)
(α2 − α4) = 0. Therefore we get m1 = m3,

m2 = m4 and so a contradiction m1 = m2 = m3 = m4 by the assumption
m1 +m3 = m2 +m4.

(i.2.2) Suppose that α1−α2+α3−α4 = 0; it implies α1+α3 = α2+α4, which
implies that f is decomposable as above.

(i.2.3) The case of α1 − ζα2 − α3 + ζα4 = 0 is similar to (i.2.1).

Thus we have shown that in the case of (i), f is decomposable.

Case (ii). The second case gives the following equations:

m1α1 +m2α2 +m3α3 +m4α4 = m, (13)

m2α1 +m1α2 +m4α3 +m3α4 = m, (14)

m3α1 +m4α2 +m1α3 +m2α4 = m, (15)

m4α1 +m3α2 +m2α3 +m1α4 = m. (16)

(13), (14) (resp. (15), (16)) give

(m1 +m2)(α1 + α2) + (m3 +m4)(α3 + α4) = 2m,

(m3 +m4)(α1 + α2) + (m1 +m2)(α3 + α4) = 2m,

hence if m1 + m2 = m3 + m4 holds, then α1 + α2 = α3 + α4 follows,
i.e., f is decomposable. Hence we may suppose that m1 +m2 = m3 +m4.
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Similarly, using (13), (16) (resp. (14), (15)) , we may suppose m1 +m4 = m2 +
m3, and m1 + m3 = m2 + m4, using (13), (15) (resp. (14), (16)). These give
a contradiction m1 = m2 = m3 = m4.

Finally, let us consider:

Case (iii). Acting σ1, σ2 on
∑

miαi = m, we have

m1α1 +m2α2 +m3α3 +m4α4 = m,

m1α2 +m2α1 +m3α3 +m4α4 = m,

m1α1 +m2α2 +m3α4 +m4α3 = m,

which implies

(m1 −m2)(α1 − α2) = (m3 −m4)(α3 − α4) = 0.

Since αi’s are distinct, we have

m1 = m2, m3 = m4.

By m1 = m3, the equations

(α1 + α2) + (α3 + α4) = −a3, m1(α1 + α2) +m3(α3 + α4) = m

imply

b1 := α1 + α2 ∈ Q, b2 := α3 + α4 ∈ Q.

Therefore

f(x) =
(
x2 − (α1 + α2)x+ α1α2

)(
x2 − (α3 + α4)x+ α3α4

)
is equal to

x4 + a3x
3 + (α3α4 + b1b2 + α1α2)x

2 − (b1α3α4 + b2α1α2)x+ f(0),

hence we have

α1α2 + α3α4 = a2 − b1b2, b2α1α2 + b1α3α4 = −a1.

If b1 = b2 holds, then solving them, we have α1α2, α3α4 ∈ Q, which implies that
f is reducible. Thus we have b1 = b2 and then f is a polynomial in x2 − b1x,
that is decomposable.

The following is an easy corollary.

�		���� 1� Let f be a polynomial of degree less than 6 and suppose that f
has a non-trivial liner relation among roots. Then f is reducible or decomposable.
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�	�	����	
 4� Let f = (x2+ax)2+b(x2+ax)+c (a, b, c ∈ Q) be an irreducible
and decomposable polynomial, and put

x2 + bx+ c = (x− β1)(x− β2), x2 + ax− βi = (x− αi,1)(x− αi,2).

Then equations αi,1 + αi,2 = −a (i = 1, 2) are a basis of linear relations (3)
among roots of f.

P r o o f. Let

m1,1α1,1 +m1,2α1,2 +m2,1α2,1 +m2,2α2,2 = m (mi,j,m ∈ Q)

be a linear relation. Using αi,1 + αi,2 = −a, we may suppose

m1,2α1,2 +m2,2α2,2 = m.

We have only to show m2,2 = 0, which implies m1,2 = 0, hence we complete the
proof. Suppose that m2,2 = 0, and dividing m2,2, we may assume

α2,2 = m1α1,2 +m2 (m1,m2 ∈ Q).

Hence α1,2 is a root of g(x) = x2 + ax − β1 and h(x) = (m1x + m2)
2 +

a(m1x+m2)− β2 = (m1x+m2)
2 + a(m1x +m2) + b + β1, which are polyno-

mials over a quadratic field Q(β1). Since g(x) is irreducible in Q(β1)[x], we have
h(x) = m2

1g(x), hence comparing constant terms m2
2 + am2 + b+ β1 = −m2

1β1.
Thus we find a contradiction that β1 is rational. �

Let us give D(f, σ) explicitly for a polynomial of degree 4. In case that f is
irreducible and indecomposable, there is only a trivial relation, hence

D(f, σ) = D̂n.

In case that f is irreducible and decomposable, by using Proposition 4, we find,
with dimD(f, σ) = 2

D(f, σ) =

{
(x1, x2, x3, x4)

∣∣∣∣ 0 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 1,

xσ(1) + xσ(2) ∈ Z, xσ(3) + xσ(4) ∈ Z

}

= {(x1, x2, 1− x2, 1− x1) | 0 ≤ x1 ≤ x2 ≤ 1− x2 ≤ 1− x1 < 1},
which is parametrized by 0 ≤ x1 ≤ x2 ≤ 1/2. The dimension of a domain
corresponding to {σ(1), σ(2)} = {1, 4}, {2, 3} is less than 2. To confirm Expecta-
tion 1′, i.e., (8), what we can do now is an approximate calculation by computer.
The right hand of (8) is a ratio, hence we do not need to look for volumes them-
selves. By using a projection to (x1, x2)-plane, we can approximate the right
hand of (8) by the Monte Carlo method.
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In case that f is a product of two irreducible quadratic polynomials with
distinct fundamental discriminants, relations are similar to the previous case
and hence D(f, σ) is the same.

In case that two irreducible quadratic factors have the same fundamental
discriminant D, e.g., f(x) = (x2 −D)

(
(x− 1)2 − 4D

)
, put

α1 =
√
D, α2 = −

√
D, α3 = 1 + 2

√
D, α4 = 1− 2

√
D.

A basis of linear relations (3) among roots are

α1 + α2 = 0, 2α1 − α3 = −1, 2α1 + α4 = 1,

hence hyperplanes necessary in [0, 1)4 in question are

x1 + x2, 2x1 − x3, 2x1 + x4 ∈ Z

and its permutations of indexes.

Thus we see that D(f, σ) of dim 1 is one of

{
(x, 2x, 1− 2x, 1− x) | 0 ≤ x < 1/4

}
for σ =

(
1 2 3 4
1 4 2 3

)
,

{
(x, 1− 2x, 2x, 1− x) | 1/4 ≤ x < 1/3

}
for σ =

(
1 2 3 4
1 4 3 2

)
,

{
(1− 2x, x, 1− x, 2x) | 1/3 ≤ x < 1/2

}
for σ =

(
1 2 3 4
2 3 4 1

)
.

Let us see that Expectation 1′′ is true in this case. It is easy to see that lengths
are, in order

√
10/4,

√
10/12,

√
10/6. For densities of Spl (f, σ), we invoke [1], [9],

that is for an irreducible quadratic polynomial, r1/p, r2/p are equi-distributed.
Let r be a root of r2 ≡ D mod p with 0 < r < p/2. Then other roots of
f(x) ≡ 0 mod p are −r, 1 ± 2r mod p, and it is easy to see except for finitely
many primes local roots r1, . . . , r4 are in order

(r1, . . . , r4) =

⎧⎨
⎩

(r, 1 + 2r, p+ 1− 2r, p− r) if r/p ∈ [0, 1/4),
(r, p+ 1− 2r, 1 + 2r, p− r) if r/p ∈ [1/4, 1/3),
(p+ 1− 2r, r, p− r, 1 + 2r) if r/p ∈ [1/3, 1/2).

The uniformity of r/p implies that densities are proportional to

1/4, 1/3− 1/4 = 1/12, 1/2− 1/3 = 1/6.

Hence the constant c in Expectation 1′′ is independent of σ.
In case that a polynomial f is a product of irreducible quadratic polynomials

with the same fundamental discriminant, Expectation 1′, 1′′ should be reduced
to [1], [9].
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In case that f(x) =
∏a

i=1(x − αi) · g(x), where αi’s are all rational inte-
ger roots of f with α1 ≤ . . . αt < 0 ≤ αt+1 ≤ . . . αa It is easy to see that

r1 = αt+1, . . . , ra−t = αa, rn+1−t = p+ αt, . . . , rn = p+ α1

for any prime p ∈ Spl (f) except finitely many primes. Linear relations among
roots are reduced to relations of g. Therefore the projection of D(f, σ) to a
hyperplane defined by

x1 = · · · = xa = 0 with σ(i) = i (1 ≤ i ≤ a)

isD(g, σ|{a+1,...,n}) modulo a lower dimensional set, hence the problem is reduced
to that of a polynomial g(x) as expected.

Before we discuss the case of degree six, let us introduce a notion “type”.
For an irreducible polynomial f of degree 6, we define its type number 2, 3
temporarily as follows :

Denote a root of f by α. The type number of f is 2 if Q(α) contains a quadratic
subfield M2 such that the trace of α to M2 is rational.

The type number of f is 3 if Q(α) contains a cubic subfield M3 such that the
discriminant D of the monic minimal quadratic polynomial g2(x) of α over M3

is rational.

We note that the type number is independent of the choice of a root α of f,
and type numbers of f(x), f(x+ a) (a ∈ Q) are equal.

�	�	����	
 5� Let f = x6 + a5x
5 + · · · + a0 be an irreducible polynomial of

degree 6 with roots α1, . . . , α6 and suppose that there is a non-trivial relation (3).
Then we have :

(i) The extension degree [Q(f) : Q] is not divisible by 5.

(ii) If Q(α1) is an abelian extension, then f is either of type 2 or 3, or decom-
posable.

(iii) If Q(α1) is an S3 Galois extension, then f is either of type 2 or 3, decom-
posable or there are a rational number c, two distinct roots α, α′ of f, and
a cubic subfield M3 such that trK/M3

(α)+ c · trK/M3
(α′) ∈ Q and α, α′ are

not conjugate over M3.

P r o o f. Let (3) be a non-trivial relation.

(i) Suppose that the extension degree [Q(f) : Q] is divisible by 5 ; then there is
an automorphism σ of order 5 in Gal (Q(f)/Q), which acts faithfully on a set
{α1, . . . , α6}, hence we may assume that

σ(αi) = αi+1 (i = 1, 2, 3, 4), σ(α5) = α1 and σ(α6) = α6.
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Adding a trivial relation, we may assume
∑5

i=1mi = 0⎛
⎜⎜⎜⎜⎝
m1 m2 m3 m4 m5

m5 m1 m2 m3 m4

m4 m5 m1 m2 m3

m3 m4 m5 m1 m2

m2 m3 m4 m5 m1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
α1

α2

α3

α4

α5

⎞
⎟⎟⎟⎟⎠ = (m−m6α6)

⎛
⎜⎜⎜⎜⎝
1
1
1
1
1

⎞
⎟⎟⎟⎟⎠

If the determinant of the coefficient matrix does not vanish, then α1, . . . , α5 are in
Q(α6), hence Q(α6) = Q({α1, . . . , α6}) = Q(f) is a Galois extension of degree 6.
This contradicts the assumption. Thus the determinant vanishes, hence there is

a fifth root ζ of unity satisfying
∑5

i=1miζ
i−1 = 0, i.e., m1 = · · · = m5. Thus (3)

implies m1(tr (f) − α6) + m6α6 = m, which implies m1 = m6, that is (3) is a
trivial relation, contradicting the assumption. This completes the proof of (i). �

(ii) Suppose that Q(α1) is an abelian extension, hence the Galois group is gener-
ated by an automorphism σ of order 6. We may assume that σ(αi) = αi+1,
where αj = αk if j ≡ k mod 6. Otherwise, there is a fixed root αi by σ.

Let ζ = (1 +
√−3)/2 be a primitive sixth root of unity, which satisfies

ζ2 − ζ + 1 = 0 and ζ3 = −1, and consider central idempotents

χi = 6−1
∑

j mod 6

ζijσj,

which satisfies ∑
i mod 6

χi = 1, χiχj = δi,jχj .

The equation (3) is equivalent to χi(m) = χi(
∑

k mkαk), hence

0 = χi(m) =

( ∑
k mod 6

ζ−ikmk

)( ∑
l mod 6

ζilαl

)
(i ≡ 0 mod 6),

using χi(αk) = 6−1ζ−ki
∑

l mod 6 ζ
liαl. Thus for

i ≡ 0 mod 6,
∑

k mod 6

ζikmk = 0 or
∑

l mod 6

ζilαl = 0 occurs.

If
∑

l mod 6 ζ
ilαl = 0 holds for every i = 1, . . . , 5, then we have

0 =

5∑
i=1

( ∑
l mod 6

ζilαl

)
= 5α6 +

5∑
l=1

(
5∑

i=1

ζil

)
αl

= 5α6 −
5∑

l=1

αl = 6α6 − tr (f),
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which implies a contradiction α6 ∈ Q. Hence, we have
∑

l mod 6 ζ
ilαl = 0

for some i ≡ 0 mod 6, i.e.,

ζ−i
6∑

k=1

ζikmk = m1 + ζim2 + ζ2im3 + · · ·+ ζ5im6 = 0. (17)

By expressing the above as a linear form of ζ and 1, the equation (17) is⎧⎪⎨
⎪⎩
m1 −m3 −m4 +m6 = m2 +m3 −m5 −m6 = 0 (i = 1, 5),

m1 −m2 +m4 −m5 = m2 −m3 +m5 −m6 = 0 (i = 2, 4),

m1 +m3 +m5 = m2 +m4 +m6 (i = 3).

Suppose that (17) is true for both i = 1 and i = 2 : Then we have

m1 = m3 = m5 and m2 = m4 = m6.

If (17) is true for i = 3 moreover, then (3) is a trivial relation, which is a
contradiction. Thus (17) is false for i = 3, hence

∑
l mod 6 ζ

3lαl = 0 follows, that
is α1 + α3 + α5 = α2 + α4 + α6. Putting g = (x − α1)(x − α3)(x − α5) and
h = (x− α2)(x− α4)(x− α6), coefficients of polynomials g, h are in a quadratic
subfield M2 fixed by σ2 and their second leading coefficient α1 + α3 + α5 =
α2 + α4 + α6 = tr (f)/2 is rational, hence f is of type 2.

Suppose that (17) is true for i = 1, but false for i = 2, 4 : Hence we have∑
l mod 6 ζ

ilαl = 0 for i = 2, 4, which implies two equations

(α1 − α2 + α4 − α5)
√−3 + (−α1 − α2 + 2α3 − α4 − α5 + 2α6) = 0,

−(α1 − α2 + α4 − α5)
√−3 + (−α1 − α2 + 2α3 − α4 − α5 + 2α6) = 0,

hence α1 +α4 = α2 +α5 = α3 +α6. Thus f is a polynomial in x2 + (α1 + α4)x,
that is decomposable.

Finally, we assume that (17) is false for i = 1 hence for i = 5; similarly to the
above, we have α1 + α2 − α4 − α5 = 0, i.e., α1 − α4 = α5 − α2. Hence we see
that the discriminant (α1 −α4)

2 of a polynomial (x−α1)(x−α4) fixed by σ3 is
fixed by σ, hence rational, that is f is of type 3.

(iii) Suppose that K = Q(α1) is an S3-extension : Then there are automorphisms
σ, μ and a numbering βi,j (i = 1, 2, j = 1, 2, 3) of roots αi of f such that
σ3 = η2 = 1, ηση = σ2 and

σ(βi,1) = βi,2, σ(βi,2) = βi,3, σ(βi,3) = βi,1 (i = 1, 2)

η(β1,1) = β2,1, η(β1,2) = β2,3, η(β1,3) = β2,2,

noting that σ, η have no fixed root. We divide a proof to several parts.
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����� 1�

(1) If
∑

j β1,j is rational, then f is of type 2.

(2) If one of (β1,1 − β2,1)
2,(β1,2 − β2,3)

2,(β1,3 − β2,2)
2 is fixed by σ, then f is

of type 3.

P r o o f.
Suppose that

∑
i β1,j ∈ Q, and decompose f as f = gh with g =

∏
(x− β1,j),

h =
∏
(x− β2,j) ∈ M2[x], where M2 is a quadratic subfield fixed by σ. Therefore

f is of type 2. Since polynomials (x − β1,1)(x − β2,1), (x − β1,2)(x − β2,3) and
(x − β1,3)(x − β2,2) are fixed by η, their discriminants are also fixed by η.
Therefore, if the discriminant is fixed by σ, it is a rational number, that is,
f is of type 3. �

����� 2� If there is a non-trivial relation∑
j

m1,jβ1,j +
∑
j

m2,jβ2,j = m (mi,j,m ∈ Q), (18)

then f is of type 2, or there are rational numbers m1,m2,m3 with mi = mj for
some i, j and m1 +m2 +m3 = 0 such that

m1(β1,1 + β2,1) +m2(β1,2 + β2,3) +m3(β1,3 + β2,2) = 0. (19)

P r o o f. We may suppose that m = 0 in (18) by the remark at the beginning of
this section, and acting id, σ, σ2, η, ησ, ησ2 in order, we have

m1,1β1,1 +m1,2β1,2 +m1,3β1,3 +m2,1β2,1 +m2,2β2,2 +m2,3β2,3 = 0, (20)

m1,3β1,1 +m1,1β1,2 +m1,2β1,3 +m2,3β2,1 +m2,1β2,2 +m2,2β2,3 = 0, (21)

m1,2β1,1 +m1,3β1,2 +m1,1β1,3 +m2,2β2,1 +m2,3β2,2 +m2,1β2,3 = 0, (22)

m2,1β1,1 +m2,3β1,2 +m2,2β1,3 +m1,1β2,1 +m1,3β2,2 +m1,2β2,3 = 0, (23)

m2,3β1,1 +m2,2β1,2 +m2,1β1,3 +m1,3β2,1 +m1,2β2,2 +m1,1β2,3 = 0, (24)

m2,2β1,1 +m2,1β1,2 +m2,3β1,3 +m1,2β2,1 +m1,1β2,2 +m1,3β2,3 = 0. (25)

Equations (20)+(23), (21)+(24), (22)+(25) are⎛
⎝m1,1 +m2,1 m1,2 +m2,3 m1,3 +m2,2

m1,3 +m2,3 m1,1 +m2,2 m1,2 +m2,1

m1,2 +m2,2 m1,3 +m2,1 m1,1 +m2,3

⎞
⎠
⎛
⎝β1,1 + β2,1
β1,2 + β2,3
β1,3 + β2,2

⎞
⎠ =

⎛
⎝0
0
0

⎞
⎠ . (26)
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If entries in each row of the coefficient matrix in (26) are the same, that is⎧⎪⎨
⎪⎩

m1,1 +m2,1 = m1,2 +m2,3 = m1,3 +m2,2 := a (say),

m1,3 +m2,3 = m1,1 +m2,2 = m1,2 +m2,1 := b,

m1,2 +m2,2 = m1,3 +m2,1 = m1,1 +m2,3 := c,

then we have ⎧⎪⎨
⎪⎩

m2,3 = a−m1,2 = b−m1,3 = c−m1,1,

m2,2 = a−m1,3 = b−m1,1 = c−m1,2,

m2,1 = a−m1,1 = b−m1,2 = c−m1,3,

hence

m1,3 = m1,1 + b− c = m1,1 + a− b = m1,1 − a+ c,

which imply

b− c = a− b = −a+ c, hence a = b = c.

Therefore, we get m1,1 = m1,2 = m1,3 and m2,1 = m2,2 = m2,3. The non-
triviality of (20) implies m1,1 = m2,1, hence comparing it with trivial relation∑

i β1,i +
∑

i β2,i = tr (f), we see
∑

i β1,i ∈ Q. By lemma 1, f is of type 2.

If there are distinct entries in some row of the coefficient matrix in (26),
then putting entries of the row by m1,m2,m3, we have

m1(β1,1 + β2,1) +m2(β1,2 + β2,3) +m3(β1,3 + β2,2) = 0.

If tr (f) = 0, then taking the trace, we have (m1 + m2 + m3)tr (f) = 0, which
implies m1 + m2 + m3 = 0. If tr (f) = 0, then we have only to replace mi

by mi − (m1 +m2 +m3)/3.

Thus we have, by (19)

m1(β1,1 + β2,1 − β1,3 − β2,2) +m2(β1,2 + β2,3 − β1,3 − β2,2) = 0,

where m1 = m2 = 0 does not hold.

We divide the proof to several cases:

(I) Case of m1 = 0 and m2 = 0 : We have β1,2 + β2,3 − β1,3 − β2,2 = 0, and
β1,3 + β2,1 − β1,1 − β2,3 = 0, acting σ. Therefore we find that β1,1 − β2,1 =
β1,3− β2,3 = β1,2 −β2,2, which is σ-invariant, hence by Lemma 1, f is of type 3.

(II) Case of m1 = 0 and m2 = 0 : We have σ(β1,1 + β2,1 − β1,3 − β2,2) = β1,2 +
β2,2−β1,1−β2,3 = 0, and β2,3+β1,3−β2,1−β1,2 = 0, acting η. Hence, we find that
σ(β1,2−β2,3)

2−(β1,2−β2,3)
2 = (β1,3−β2,1+β1,2−β2,3)(β1,3−β2,1−β1,2+β2,3) = 0

and so by Lemma 1, f is of type 3.

(III) Case of m1m2 = 0 : Dividing by m2, we may suppose m2 = 1, that is

m1(β1,1 + β2,1 − β1,3 − β2,2) + (β1,2 + β2,3 − β1,3 − β2,2) = 0 (27)
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Suppose that m1 = 1 : Adding 3(β1,3 + β2,2) to the above, we have tr (f) =
3(β1,3+β2,2). Acting σ, we have β1,3+β2,2 = β1,1+β2,3 = β1,2+β2,1 = tr (f)/3.
Therefore, f = (x− β1,3)(x− β2,2) · (x− β1,1)(x− β2,3) · (x− β1,2)(x− β2,1) is
a polynomial in x2 − tr (f)/3 · x, that is decomposable.

Finally, we assume that m1 = 1. Substituting β1,2 + β2,3 = −(β1,1 + β2,1 +
β1,3 + β2,2) + tr (f) to (27), we get

(m1 − 1)(β1,1 + β2,1)− (m1 + 2)(β1,3 + β2,2) = −tr (f).

By denoting a cubic subfield fixed by η by M3, it means

(m1 − 1)trK/M3
(β1,1)− (m1 + 2)trK/M3

(β1,3) = −tr (f),

which completes the proof, putting

c = −(m1 + 2)/(m1 − 1), α = β1,1, α′ = β1,3. �

In [3], there are examples of a polynomial of type 2, 3, but at that time the
author did not recognize any S3-type polynomial satisfying the last condition in
Proposition 5. In the next section, we give examples.

Let us give a basis of linear relations of an irreducible abelian polynomial of
degree 6 without proof to describe a set D(f, σ).

�	�	����	
 6� Let f be an irreducible polynomial of degree 6 with a root
α1 and suppose that Q(α1)/Q is an abelian extension of Q and let σ be an
automorphism satisfying σ(αi)=αi+1 (αi=αj for i≡j mod 6) for roots αi of f.

Then a basis of linear relations among roots are:

(a) In case that f is indecomposable and neither of type 2 nor of type 3.

6∑
i=1

αi = tr (f).

(b) in case that f is indecomposable and of type 2,

α1 + α3 + α5 = α2 + α4 + α6 = tr (f)/2.

(c) In case that f is indecomposable and of type 3,∑
αi = tr (f), α1 + α2 − (α4 + α5) = 0, α2 + α3 − (α5 + α6) = 0.

(d) In case that f(x) = g
(
h(x)

)
is possible for a cubic polynomial g, but im-

possible for a quadratic polynomial g,

α1 + α4 = α2 + α5 = α3 + α6 = tr (f)/3.
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(e) In case that f(x) = g
(
h(x)

)
is possible for a quadratic polynomial g, but

impossible for a cubic polynomial g,

α1 + α3 + α5 = α2 + α4 + α6 = tr (f)/2.

(f) In case that f is decomposable and f(x) = g
(
h(x)

)
is possible for both

deg g = 2, 3,

α1 + α4 = α2 + α5 = α3 + α6 = tr (f)/3, α1 − α2 + α3 = tr (f)/6.

Except this abelian case, even the classification of non-trivial relations is
incomplete.

2. Expectation 2 for a polynomial of degree 6

We have no data to deny Expectation 2 for an irreducible and indecomposable
polynomial f in the case of degree ≤ 5, but it fails in the case of degree 6. The
two conditions irreducibility and indecomposability are equivalent to having no
non-trivial linear relations among roots in the case of degree ≤ 5 as in the
previous section. Data in [2] are less accurate in the case of degree 6, that is X
in (11) was too small to guess the precise limit. We improve a method to guess
the limit from approximate values.

Suppose that the limit in (11) exists and every Pr (f, L, {Ri}) is rational :
Then for the common denominator b, we see that

∑
{Ri}

Pr (f, L, {Ri}) · b = b, gcd

(
gcd
{Ri}

(
Pr (f, L, {Ri}) · b

)
, b

)
= 1.

Supposing that b is less than 30000 and taking the above into account, let us
consider integers d with 1 ≤ d ≤ 30000, which satisfies

∑
{Ri}

r
(
PrX(f, L, {Ri}) · d

)
= d, gcd

(
gcd
{Ri}

(
r
(
PrX(f, L, {Ri}) · d

))
, d

)
= 1, (28)

where r(x) is an integer closest to x. Because, they must be satisfied if d is the
common denominator ofPr (f, L, {Ri}) andan approximation by PrX(f, L, {Ri})
is sufficiently well. We consider the following four measures, abbreviating
PrX(f, [3]L, {Ri}) to PrX,Ri

:

er1 := max
{Ri}

∣∣∣∣PrX,Ri
· d− r(PrX,Ri

· d)
∣∣∣∣,

er2 :=
∑
{Ri}

∣∣∣∣PrX,Ri
· d− r(PrX,Ri

· d)
∣∣∣∣
2

,
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er3 := max
{Ri}

∣∣∣∣PrX,Ri
− r(PrX,Ri

· d)/d
∣∣∣∣,

er4 :=
∑
{Ri}

∣∣∣∣PrX,Ri
− r(PrX,Ri

· d)/d
∣∣∣∣
2

.

If PrX(f, L, {Ri}) approximates a rational number a/b well, they are close to
0 for d = b. So, we can find the conjectural denominator b of Pr (f, L, {Ri})
by checking that there is a large number X satisfying that there is an integer d
with 1 ≤ d ≤ 30000 which gives the common minimum for four measures above.
The first two d-adic measures er1, er2 seem to be more appropriate.

We put

f1 := x6 + 2x5 + 4x4 + x3 + 2x2 − 3x + 1,
f2 := x6 + 4x5 + 16x4 + 22x3 + 39x2 + 16x + 29,
f3 := x6 + 5x5 + 11x4 + 13x3 + 23x2 + 31x + 43,
f4 := x6 + 8x5 + 43x4 + 134x3 + 372x2 + 596x + 953.

They are irreducible and indecomposable and define the same cyclotomic field
Q(ζ7), and the type of f1, f2 is 2 and that of f3, f4 is 3.

Let L = 2. A 6-tuple (R1, . . . , R6) with 0 ≤ Ri ≤ L − 1 corresponds to an
integer r with 1 ≤ r ≤ L6 by

r = 1 +

6∑
i=1

RiL
i−1.

(I) The case that there is no non-trivial linear relation among roots :
For a polynomial f = x6 + 5x5 + 1 in [2], data were insufficient. Wrong val-
ues 7/512 = 0.0136 . . . , 9/512 = 0.0175 . . . on p.87 in [2] are close to the con-
jectural values 13/960 = 0.0135 . . . , 17/960 = 0.0177 . . . on p.84 respectively.
The common denominator for four measures above is 960 for X = 1.36 · 1012
and the density matches with the conjecture (12). The density in (12) for L = 2
is given explicitly by

Pr (f, 2, {Ri}) =
{
13/960 if tr (f) +

∑
Ri ≡ 0 mod 2,

17/960 if tr (f) +
∑

Ri ≡ 1 mod 2.
(29)

(II) Case that f is irreducible and indecomposable, and the type number is 2.
For f = f1, f2, the common denominator of PrX(f, 2, {Ri}) for four measures
is 2304, which is attained for X = 2 · 1011. The following table of densities
is arranged in the order of r above. For example, (R1, . . . , R6) = (0, . . . , 0)
corresponds to r = 1, and hence the density Pr

(
f1, 2, (0, . . . , 0)

)
is the first entry

36/2304.
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Pr (f1, 2, {Ri})=[ 36, 4, 15, 43, 43, 42, 23, 62, 29, 30, 35, 48, 36, 38, 49, 43,
57, 29, 36, 38, 37, 40, 29, 42, 49, 54, 43, 30, 23, 29, 36, 4,
68, 36, 43, 49, 42, 29, 18, 23, 30, 43, 32, 35, 34, 36, 43, 15,
29, 23, 34, 36, 24, 37, 42, 43, 10, 49, 30, 29, 29, 57, 68, 36 ]/2304,

Pr (f2, 2, {Ri})=[ 36, 68, 57, 29, 29, 30, 49, 10, 43, 42, 37, 24, 36, 34, 23, 29,
15, 43, 36, 34, 35, 32, 43, 30, 23, 18, 29, 42, 49, 43, 36, 68,
4, 36, 29, 23, 30, 43, 54, 49, 42, 29, 40, 37, 38, 36, 29, 57,

43, 49, 38, 36, 48, 35, 30, 29, 62, 23, 42, 43, 43, 15, 4, 36 ]/2304.

Errors are
er1(f1) = 0.019615, er1(f2) = 0.026945.

The density of another polynomial f of type 2 for L = 2 seems to be given
by the above according to tr (f) mod 4. (tr (f) is an even integer in this case.)
Let f(x) be of type 2; then a polynomial f(x− 1) is also of type 2 and

tr
(
f(x− 1)

) ≡ tr
(
f(x)

)
+ 2 mod 4 is easy.

If r1, . . . , r6 are local roots with ri ≡ Ri mod 2, then r′1 := r1+1, . . . , r′6 := r6+1
are also local roots of f(x − 1) with r′i ≡ Ri + 1 mod 2. It is the reason why
the densities Pr (f1, 2, {Ri}),Pr (f2, 2, {Ri}) are anti-symmetric. Some properties
of f = f1, f2 are for R = (R1, . . . , R6), R

′ = (R′
1, . . . , R

′
6),

(1) if Ri + R′
i = 1 for 1 ≤ ∀i ≤ 6, then Pr (f, 2, {Ri}) + Pr (f, 2, {R′

i}) =
72/2304 = 1/32,

(2)
∑

∑
Ri≡0 mod 2 Pr (f, 2, {Ri}) =

∑
∑

Ri≡1 mod 2 Pr (f, 2, {Ri}) = 1/2,

(3) if Ri = 1−R′
7−i for 1 ≤ ∀i ≤ 6, then Pr (f, 2, {Ri}) = Pr (f, 2, {R′

i}).

The third property is explained as follows: If we have f(x) ≡ ∏
(x− ri) mod p,

then f(−x) ≡ ∏
(x − r′i) mod p with r′i = p − r7−i is easy to see. Hence the

condition ri ≡ Ri mod 2 implies r′i ≡ 1−R7−i mod 2 for an odd prime p.

The author does not know how to give densities directly from {Ri}.
A basis of linear relations of f = f1, f2 with an appropriate numbering is

α1 + α3 + α5 = α2 + α4 + α6 = tr (f)/2.

(III) The case that f is irreducible and indecomposable, and the type number is 3.
For f = f3, f4, the common denominator of PrX(f, 2, {Ri}) for four measures
is 15120, which is attained for X = 2 · 1011. The following table of densities is
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arranged in the order of r as above.

Pr (f3, 2, {Ri})= [525, 189, 63, 414, 63, 229, 176, 159, 63, 224, 288, 172,
544, 125, 204, 414, 63, 153, 394, 125, 288, 320, 300, 229,
176, 401, 300, 224, 204, 153, 189, 189, 189, 189, 153, 204,
224, 300, 401, 176, 229, 300, 320, 288, 125, 394, 153, 63,
414, 204, 125, 544, 172, 288, 224, 63, 159, 176, 229, 63,
414, 63, 189, 525 ] /15120,

Pr (f4, 2, {Ri})= [420, 288, 180, 279, 162, 157, 140, 336, 162, 110, 174, 229,
343, 176, 273, 279, 180, 84, 247, 176, 174, 485, 405, 157,
140, 602, 405, 110, 273, 84, 42, 288, 288, 42, 84, 273,
110, 405, 602, 140, 157, 405, 485, 174, 176, 247, 84, 180,
279, 273, 176, 343, 229, 174, 110, 162, 336, 140, 157, 162,
279, 180, 288, 420 ] /15120.

Errors are
er1(f3) = 0.16450, er1(f4) = 0.16892.

We note that tr (f3) is odd and tr (f4) is even, and the density of another polyno-
mial of type 3 for L = 2 seems to be given by the above according to tr (f) mod 2.

A basis of linear relations of f = f3, f4 is∑
αi = tr (f), α1 + α2 = α4 + α5, α2 + α3 = α5 + α6.

(IV) The case that K = Q(α1) is an S3-extension and there are a rational
number c, two distinct roots α, α′ of f, and a cubic subfield M3 such that
trK/M3

(α) + c · trK/M3
(α′) ∈ Q. Let us give two examples :

The first example is f = x6 +3. Putting y := 6
√−3 with y3 =

√−3, roots are

β1,1 = y, β1,2 = (−1 +
√−3)/2 · y, β1,3 = −(1 +

√−3)/2 · y,
β2,1 = −y, β2,2 = ( 1−√−3)/2 · y, β2,3 = (1 +

√−3)/2 · y.
Automorphisms η, σ in the proof of Proposition 5 are given by y 
→ −y, y 
→
(−1 +

√−3)/2 · y, respectively. A basis of linear relations is four equations

β1,2 = −β1,1 + β2,3, β1,3 = −β2,3, β2,1 = −β1,1, β2,2 = β1,1 − β2,3.

The inclusion trK/M3
(α)+c·trK/M3

(α′) ∈ Q is obvious for α = y, c = 0. Densities
Pr (f, 2, {Ri}) for [R1, . . . , R6] are given by:⎧⎪⎪⎨
⎪⎪⎩

1/16 for [1, 1, 1, 0, 0, 0], [1, 0, 0, 1, 1, 0], [0, 1, 0, 1, 0, 1], [0, 0, 1, 0, 1, 1],

3/16 for [1, 1, 0, 1, 0, 0], [1, 0, 1, 0, 1, 0], [0, 1, 1, 0, 0, 1], [0, 0, 0, 1, 1, 1],

0 otherwise.
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Since −r is also a root for a local root r, a relation ri = p− r7−i should hold for
i = 1, 2, 3, hence Ri + R7−i ≡ 1 mod 2, i.e., Ri + R7−i = 1. This elucidates the
cases of density 0.

The second example is f = x6 + 100x4 − 168x3 + 5200x2 + 16800x+ 26256,
and let β be a root. Then we see that roots α1, . . . , α6 of f are in order
−1/2122960 times −2122960β,

−1757β5 +2758β4 −189756β3 +699188β2 −11117792β − 9582496,

−1463β5 + 182β4 −158004β3 +159292β2 − 8902208β −22357664,

125β5 + 710β4 + 13500β3 +131500β2 + 2458400β + 6844000,

1088β5 −2312β4 +117504β3 −553792β2 + 7895888β + 1825664,

2007β5 −1338β4 +216756β3 −436188β2 +11788672β +23270496.

The polynomial f is irreducible, indecomposable and not of type 2, 3, and we see

α1 + α6 + 3(α2 + α5) = 0

and

(α1 + α6)
3 = 756 = 28 · 33

and

(α1 + α5)
3 = −224 = −28 · 23.

Hence α1 + α6 is a trace to a cubic subfield defined by x3 − 756 = 0, hence

trK/M3
(α) + c · trK/M3

(α′) ∈ Q for α = α1, c = 3, α′ = α2.

A basis of linear relations is three equations∑
i

αi = 0, α1 + α6 + 3(α2 + α5) = 0, α1 + α5 − 2(α3 + α6) = 0.

And we see (α3 + α6)
3 = −28. The speed of convergence is slow,

er1(f) > 0.3 even for X = 4 · 1013.
The author checked the following : Let us consider following 16 polynomials

x6 − 9x4 − 4x3 + 9x2 + 3x− 1, x6 − 2x3 + 9x2 + 6x+ 2,

x6 − 7x3 − 6x2 − 9x− 3, x6 − 10x4 − 4x3 + 10x2 − 1,

x6 − 9x4 − 8x3 + 6x2 + 6x+ 1, x6 − 10x4 − 7x3 + 10x2 − 1,

x6 − 7x4 + 8x2 − 10x+ 1, x6 − x4 − 2x3 + 7x2 + x+ 10,

x6 − 8x4 − 10x3 − 3x2 + 2x+ 6, x6 − 5x4 − 7x3 − 3x2 − x+ 3,

x6 − 10x4 − 10x3 − 10x2 + 1, x6 − 9x4 − 10x3 − 2x2 − 1,
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x6 − 10x4 − 10x3 − 10x2 − 7, x6 − 10x4 − 8x3 − 4x2 + 8x− 2,

x6 − 10x4 − 10x3 + 5x2 − 2x+ 9, x6 − 10x4 − 10x3 − 10x2 − 10x− 10

which exhaust all types of Galois closure, checked by pari/gp. Take a root α
of one of them and a polynomial f whose root is

6∑
i=1

ciα
i−1 with − 1 ≤ ci ≤ 1.

We consider irreducible and indecomposable ones of degree 6 only. We checked
densities PrX(f, 2, {Ri}) approximate well densities of special polynomials
f1, f2, f3, f4 or (29), where we say that for a rational number a/b and a real
number x, x approximates well a/b if the nearest integer r(bx) to bx is a,
i.e., r(bx) = a.

For a polynomial f = x6 − 3x5 + 6x4 + 3x3 − 9x2 − 18x+ 36 of type 3 and
tr (f) ≡ 1 mod 2, which is given in [2, (5) on p.87], PrX(f, 2, {Ri}) (X ≤ 1011)
approximates well densities given above and the densities on p.87 in [2] should
be corrected by the above.
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