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ABSTRACT. We state a new formula to compute the Markoff numbers using
iterated palindromic closure and the Thue-Morse substitution. The main theorem
shows that for each Markoff number m, there exists a word v ∈ {a, b}∗ such that

m − 2 is equal to the length of the iterated palindromic closure of the iterated
antipalindromic closure of the word av. This construction gives a new recursive
construction of the Markoff numbers by the lengths of the words involved in
the palindromic closure. This construction interpolates between the Fibonacci
numbers and the Pell numbers.

Communicated by Jean-Louis Verger-Gaugry

1. Introduction

Markoff numbers are fascinating integers; the reader may use the recent book
by M a r t i n A i g n e r [A] for studying them. These numbers are related to
number theory, hyperbolic geometry, continued fractions and Christoffel words
[A, M1, M2, F, Re1, Re2]. Many great mathematicians have worked on these
numbers and the famous uniqueness conjecture by F r o b e n i u s is still unsolved
[B, M1, M2, F, C1, C2]. Markoff numbers are positive integers that appear in
the solution of the Diophantine equation

x2 + y2 + z2 = 3xyz.

The first Markoff numbers are 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610,
985, 1325, 1597, 2897, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461,

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 68R15, 52C99.
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37666, 43261, 51641; they are listed in the Sloane Encyclopedia of Integer Se-
quences (sequence number A002559). One shows that if a Markoff triple (x, z, y),
that is, a triple satisfying the previous Diophantine equation, has maximum z,
then the triple gives birth to two others, which are (x, 3xy − z, z) and (z,
3zy − x, y) (see [A] Section 3.1). One can construct a binary tree using these
computations, were each node is a Markoff triple (see [A]). The Frobenius con-
jecture asserts that each Markoff number is the maximum of a unique Markoff
triple ([A, Re2]). In the work of M a r k o f f [M1, M2], one find implicitly combi-
natorics on words and construction of balanced sequences [CF, BS, V, BdLR] on
the alphabet {11, 22}. The Markoff numbers are also linked with approximation
theory and continued fractions [BRS, B].

In this article, we find a new relation between Markoff numbers and combina-
torics on words. The main theorem shows that for each Markoff number m there
exists a word v ∈ {a, b}∗ such that m − 2 is equal to the length of the iterated
palindromic closure of the iterated antipalindromic closure of the word av.

The iterated palindromic closure (due to A l d o d e L u c a) is used in com-
binatorics on words in order to generate standard Sturmian words and central
words [dL, J, BS]. One defines first the palindromic closure w(+) of a word w:
it is the shortest palindrome having w as prefix (it exists and is unique). The
iterated palindromic closure Pal(u) is then defined recursively by Pal(1) = 1
(the empty word), and Pal(va) = (Pal(v)a)(+) for any word v and any letter a.

The iterated antipalindromic closure appears in the literature in order to
construct antipalindromes and to generalize the iterated palindromic closure
[dLDL, BPTV]. In fact, when the alphabet is binary, the iterated antipalin-
dromic closure of a word u is obtained by applying the Thue-Morse substitution
to the iterated palindromic closure of u [dLDL].

As an application of the main theorem, we give a new computation of Markoff
numbers by a recursive construction on the lengths of the words involved in the
iterated palindromic closure. The lengths of these words allow us to state a
recursive formula using a directive sequence d = d1d2 . . . dj with di on the alpha-
bet {a, b}. One interesting property is to recover the usual Fibonacci recursive
construction if dj �= dj−1 �= dj−2 and the usual Pell recursive construction if
dj �= dj−1 = dj−2 [C3, BRS].

Note that in the articles [F, P] we find two other decompositions of the Markoff
numbers as sums of positive integers: using properties of continued fractions in
the work of F r o b e n i u s and properties of snake graphs in the work of P r o p p
et al. (see also [A]).
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2. Iterated palindromic closures

In the sequel we work with the usual notations in combinatorics on words [BS].
Let A be a finite alphabet.

The reversal of a word x = x1x2 . . . xn with xi ∈ A is the word
x̃ = xnxn−1 . . . x1.

A word p is a palindrome if it is equal to its reversal (that is p = p̃).

The length of a word u = u1u2 . . . um, where ui ∈ A , is equal to m and is
denoted |u|.
The concatenation of two words u = u1u2 . . . um and v = v1v2 . . . vn is the
word of the length m+ n given by u · v = u1u2 . . . umv1v2 . . . vn.

In this article we use the palindromic closure, introduced by A l d o d e L u c a
[dL] (more precisely, it is the right palindromic closure): the palindromic closure
of a word x is the shortest palindrome having x as a prefix; it exists and is unique;
it is denoted by x(+). For example, if

x = ab, then x(+) = aba.

It is known that

x(+) = x′yx̃′,

where x = x′y with y the longest palindrome suffix of x. We consider the iterated
palindromic closure (also introduced in [dL]), denoted by Pal(d): it is a mapping
from the free monoid on A into itself, defined recursively by

Pal(d1d2 . . . dn) =
(
Pal(d1d2 . . . dn−1)dn

)(+)
, di ∈ A ,

with the initial condition Pal(1) = 1, where 1 denotes the empty word. This
mapping is injective and w is called the directive word of Pal(w). For example,
Pal(aba) = abaaba: indeed,

Pal(a) = a and Pal(ab) =
(
Pal(a)b

)(+)
= (ab)(+) = aba

and then

Pal(aba) =
(
Pal(ab)a

)(+)
= (abaa)(+) = abaaba.

We also use the Thue-Morse substitution, denoted by θ = (ab, ba): it is an
endomorphism of the free monoid {a, b}∗ that maps the letter a to ab and the
letter b to ba.
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3. Main theorem

From now on, we work with the binary alphabet A = {a, b}. We give a link
between the computation of Markoff numbers and the length of words computed
by iterated palindromic closure and Thue-Morse substitution:

������� 1� For each word v ∈ {a, b}∗, the number |Pal ◦ θ ◦ Pal(av)|+ 2 is a
Markoff number �= 1, 2. The mapping defined in this way from {a, b}∗ into the set
of Markoff numbers different from 1, 2 is surjective. Injectivity of this mapping
is equivalent to the Frobenius conjecture.

���	�
� If v′ is obtained from v by interchanging a and b, one finds that
Pal ◦ θ ◦ Pal(av) and Pal ◦ θ ◦ Pal(bv′) have the same length. In other words,
since the roles of a and b are symmetric, starting the word with b would give
exactly symmetric words of the same length, so that we can consider the word
av without loss of generality.

��	����� The first Markoff numbers (not equal to 1 or 2) are 5, 13 and 29. The
Markoff number m = 5 is given by v = 1: indeed, Pal(a) = a, thus θ◦Pal(a) = ab
and then Pal ◦ θ ◦ Pal(a) = aba, which is of length 3.

The Markoff number m = 13 is given by v = a: indeed, Pal(aa) = aa, thus
θ◦Pal(aa) = abab and then Pal◦θ◦Pal(aa) = abaababaaba, which is of length 11.

The Markoff number m = 29 is given by v = b indeed, Pal(ab) = aba, thus
θ◦Pal(aba) = abbaab and then Pal◦θ◦Pal(ab) = ababaababaabababaababaababa,
which is of length 27.

P r o o f. Define the monoid homomorphism μ from the free monoid {a, b}∗ into
SL2(Z) by

μ(a) =

(
2 1
1 1

)
and μ(b) =

(
5 2
2 1

)
.

It is known that μ(u)12 is a Markoff number for each word lower Christoffel
word u, and that each Markoff number m is equal to μ(u)12 for some lower
Christoffel word u, see [BLRS, Th. 8.10]. Moreover, the uniqueness of u is
equivalent to the Frobenius conjecture.

Ifm �= 1, 2, then u �= a, b; in this case u = apb, and it is known that p = Pal(v)
for some word v in {a, b}∗; moreover, the mapping v �→ aPal(v)b is a bijection
from {a, b}∗ onto the set of proper lower Christoffel words (this well-known result
follows for example from [BdLR, Corollary 3.1] ).

Consider the monoid homomorphism α from the free monoid {a, b}∗ into
SL2(Z) defined by

α(a) =

(
1 1
0 1

)
, α(b) =

(
1 0
1 1

)
.
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We have
α(ab) =

(
2 1
1 1

)
= μ(a), α(aabb) =

(
5 2
2 1

)
= μ(b).

Consider φ = (ab, aabb). Then μ = αφ.

Note that for each wordm, bφ(m) = ψ(m)b, where ψ = (ba, baab) = (ba, ab)G
with G = (a, ab). Using [BdLR, Corollary 3.2], we see that the length of the

Christoffel word aPal(w)b is equal to h+ i+ j + k, where α(w) =

(
h i
j k

)
.

The word w is defined as follows: we have φ(u) = φ(apb) = abφ(p)aabb and
we define w = bφ(p)a. Thus φ(u) = awabb. Then we have

μ(u) = αφ(u) = α(awabb) =

(
1 1
0 1

)(
h i
j k

)(
1 1
0 1

)(
1 0
2 1

)

=

(∗ h+ i+ j + k
∗ ∗

)
and therefore m = μ(u)12 = h+ i+ j + k = |aPal(w)b|.

Furthermore,

w = bφ(p)a = ψ(p)ba =
(
(ba, ab)G(p)

)(
(ba, ab)G(a)

)
= (ba, ab)G(pa).

Since p = Pal(v), we obtain

G(pa) = G(Pal(v)a) = Pal(av),

by Justin’s formula [Be, J]. Thus w = (ba, ab) ◦ Pal(av). The computation of m
gives

m = 2 + |Pal(w)|
= 2 + |Pal ◦ (ba, ab) ◦ Pal(av)|
= 2 + |E ◦ Pal ◦ (ba, ab) ◦ Pal(av)|
= 2 + |Pal ◦ E ◦ (ba, ab) ◦ Pal(av)|
= 2 + |Pal ◦ (ab, ba) ◦ Pal(av)|
= 2 + |Pal ◦ θ ◦ Pal(av)|. �

A word z is an antipalindrome if it is equal to the exchange of its reversal
(that is z = E(z̃)). For example, z = aababb is an antipalindrome because its
reversal is z̃ = bbabaa and the exchange gives E(z̃) = aababb.

As for the palindromic case, we use the antipalindromic closure and the it-
erated antipalindromic closure which are defined in the work of d e L u c a and
D e L u c a [dLDL]. The antipalindromic closure of a word x is the shortest an-
tipalindrome having x as a prefix; it is denoted by x⊕. For example, if x = ab,
then x⊕ = ab because ab is already an antipalindrome and if x = aa,
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then x⊕ = aabb. The iterated antipalindromic closure noted AntiPal(d) is defined
by the recursive formula AntiPal(d1d2 · · · dn) = (AntiPal(d1d2 · · · dn−1)dn)

⊕ and
the initial condition AntiPal(1) = 1. For example, AntiPal(aba) = abbaababbaab;
indeed, AntiPal(a) = ab, thus AntiPal(ab) = (AntiPal(a)b)⊕ = (abb)⊕ = abbaab
and then AntiPal(aba) = (AntiPal(ab)a)⊕ = (abbaaba)⊕ = abbaababbaab.
We see that

AntiPal(aba) = ab · ba · ab · ab · ba · ab = (ab, ba) ◦ abaaba = (ab, ba) ◦ Pal(aba).
This is a general fact, as shown in [dLDL] Theorem 7.6.

������� 2 (d e L u c a, D e L u c a)� Let v be a word on the alphabet A={a, b}
and θ = (ab, ba) be the Thue-Morse substitution. Then

AntiPal(v) = θ ◦ Pal(v).
������	�� 3� For each word v ∈ {a, b}∗, the number |P̊al ◦ AntiPal(av)| + 2
is a Markoff number �= 1, 2. The mapping defined in this way from {a, b}∗ into
the set of Markoff numbers different from 1, 2 is surjective. Injectivity of this
mapping is equivalent to the Frobenius conjecture.

4. Computation of Markoff numbers

The previous corollary gives a new way to compute the Markoff numbers
by using iterated antipalindromic closures and iterated palindromic closures.
We now give a recursive formula for computing the Markoff numbers.

������� 4� Consider d = AntiPal(av) with v ∈ {a, b}∗. We write

d = d1d2 . . . d|d| with di ∈ {a, b}. We let L0 = L1 = 1 and L2 = L1 + L0 = 2.
For j ≥ 3 we define recursively the Lj :

Lj =

⎧⎨
⎩

Lj−1 if dj = dj−1,
Lj−1 + Lj−2 if dj �= dj−1 �= dj−2,
Lj−1 + Lj−2 + Lj−3 if dj �= dj−1 = dj−2.

Then the Markoff number mv is given by

mv = 1 +

|d|∑
j=0

Lj .

Consider the example v = ab.
We have d = AntiPal(aab) = θ

(
Pal(aab)

)
= θ(aabaa) = ababbaabab and then

L0 = 1; L1 = 1; L2 = L1 + L0 = 1 + 1 = 2; L3 = L2 + L1 = 2 + 1 = 3
(because d3 = a �= d2 = b �= d1 = a); L4 = L3 + L2 = 3 + 2 = 5
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(because d4 = b �= d3 = a �= d2 = b); L5 = L4 (because d5 = d4 = b).
L6 = L5 + L4 + L3 = 5 + 5 + 3 = 13 (because d6 = a �= d5 = d4 = b);
and so on. L7 = 13; L8 = 31; L9 = 44; L10 = 75. Thus the sum of the Lj is 193
and if we add 1, we find the Markoff number 194.

A more compact way of writing the Li’s is to write d and above each letter
the Li :

dv = a b a b b a a b a b

1 1 2 3 5 5 13 13 31 44 75

P r o o f. To prove the theorem, we use Justin’s Formula [J, Be]

Pal(d′d′′) = ψd′(d′′) · Pal(d′)
with d′ a word on {a, b}∗ and d′′ a letter.

We recall that

ψd′(a) = ψd′
1

(
ψd′

2

(
· · · (ψd′

|d′|
(a)

)))
with ψa(a) = a, ψa(b) = ab

(ψa was previously denoted G) and ψb(a) = ba, ψb(b) = b.

In our construction, we use d = AntiPal(av) with v ∈ {a, b}∗ and we have
to study Pal(d) = Pal(d1d2 . . . d|d|−1d|d|). By successive applications of Justin’s
Formula we find

Pal(d1d2 . . . d|d|) = ψd1d2...d|d|−1
(d|d|) · Pal(d1d2 . . . d|d|−1),

Pal(d) = Pal(d1d2 . . . d|d|) = ψd1d2...d|d|−1
(d|d|) · · ·ψd1d2

(d3) · ψd1
(d2) · d1.

We define

Wj = ψd1d2...dj−1
(dj)

and

L′
j = |Wj | for j = 1, . . . , |d|.

Thus we have W1 = d1, W2 = ψd1
(d2), . . . , W|d| = ψd1d2...d|d|−1

(d|d|) and the L′
j

are the length of eachWj . We will prove that the L′
i’s satisfy the same recursive

formula as the Li’s; thus it will follow that Lj = L′
j . The recursive formula for

the L′
j ’s is constructed on the prefixes of d.

We investigate the base cases. Note that d begins by ab: indeed,

θ
(
Pal(av)

)
= θ(av′) = abd′′.

For the prefix of length one of d we find W1 = a, in accordance with the base
case L′

1 = |W1| = 1. For a prefix of length two of d we have W2 = ψa(b) = ab,
and thus L′

2 = |ab| = 2.
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Now we compute the recursive formula for prefixes of length at least three
of d. We have six cases to consider, indeed, we use the directive word d =
(ab, ba) ◦ Pal(av) and thus aaa and bbb are forbidden words in the directive
word d. It is sufficient to use Justin’s formula for the following prefixes of d :

d′aba, d′bab, d′bba, d′aab, d′baa and d′abb with d′ ∈ {a, b}∗.
The first case of the recursive formula is given by the prefixes of d of the form

d′baa. We write d = d1d2 . . . dj−1dj = d′baa for a given j and we are in the case
dj = dj−1 = a. Thus we have by the definition

Wj = ψd′ba(a) and Wj−1 = ψd′b(a).

We have

Wj = ψd′ba(a) = ψd′b
(
ψa(a)

)
= ψd′b(a) =Wj−1, thus Wj =Wj−1.

We find L′
j = L′

j−1 for dj = dj−1 = a. Similarly, by exchanging the roles of a
and b that is by considering the prefixes of the form d′abb we find Wj = Wj−1;
thus L′

j = L′
j−1 for dj = dj−1 = b.

The second case of the recursive formula is given by the prefixes of d of the
form d′aba. We write d1d2 . . . dj−1dj = d′aba for a some j and we are in the case
dj = a �= dj−1 = b �= dj−2 = a. By the definition

Wj = ψd′ab(a) and Wj−1 = ψd′a(b) and Wj−2 = ψd′(a),

we have
Wj = ψd′ab(a) = ψd′a

(
ψb(a)

)
= ψd′a(ba)

= ψd′a(b) · ψd′a(a)

= ψd′a(b) · ψd′
(
ψa(a)

)
= ψd′a(b) · ψd′(a)

=Wj−1 ·Wj−2.

Thus we have
Wj =Wj−1 ·Wj−2 and L′

j = L′
j−1 + L′

j−2

for dj = a �= dj−1 = b �= dj−2 = a. Similarly, for the prefixes of the form d′bab
by exchanging the roles of a and b we have

Wj = ψd′ba(b) =Wj−1Wj−2 and thus L′
j = L′

j−1 + L′
j−2

for dj = b �= dj−1 = a �= dj−2 = b.

The third case is given by the prefixes of d of the form d′′′bba. As bbb is
forbidden in d, thus we write

d1d2 . . . dj−1dj = d′abba and we have dj = a �= dj−1 = dj−2 = b.
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By the definition

Wj = ψd′abb(a), Wj−1 = ψd′ab(b), Wj−2 = ψd′a(b) and Wj−3 = ψd′(a)

for a given j we have

Wj = ψd′abb(a) = ψd′a

(
ψb

(
ψb(a)

))
= ψd′a

(
ψb(ba)

)
= ψd′a(bba)

= ψd′a(b) · ψd′a(b) · ψd′a(a) = ψd′ab(b) · ψd′a(b) · ψd′a(a)

= ψd′ab(b) · ψd′a(b) · ψd′(a)

=Wj−1 ·Wj−2 ·Wj−3
Thus we have

Wj = ψd′abb(a) =Wj−1 ·Wj−2 ·Wj−3

and thus

L′
j = L′

j−1 + L′
j−2 + L′

j−3 for dj = a �= dj−1 = dj−2 = b,

And similarly, for the prefixes of the form d′baab we find

Wj = ψd′baa(b),=Wj−1 ·Wj−2 ·Wj−3

and
L′
j = L′

j−1 + L′
j−2 + L′

j−3 for dj = b �= dj−1 = dj−2 = a.

Finally, we have to compute the Markoff numbers by using Corollary 3:

m = |Pal(d)|+ 2 with d = AntiPal(av).

Thus by Justin’s Formula

m = |ψd1d2···d|d|−1
(d|d|) · · · ψd1d2

(d3) · ψd1
(d2) · d1|+ 2

= |W|d||+ |W|d|−1|+ · · ·+ |W2|+ |W1|+ 2

= 2 +

|d|∑
j=1

Lj = 1 +

|d|∑
j=0

Lj .
�

Note that in the second case of the recursive formula, we have a Fibonacci
recurrence

Lj = Lj−1 + Lj−2.

In the third case of the recursive formula we have

Lj = Lj−1 + Lj−2 + Lj−3 and dj−1 = dj−2.

By application of the first case of the recursive formula we find

Lj−1 = Lj−2

and then a Pell recurrence
Lj = 2Lj−2 + Lj−3.
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