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ON IRREGULARITIES OF DISTRIBUTION

OF BINARY SEQUENCES RELATIVE

TO ARITHMETIC PROGRESSIONS, I.

(GENERAL RESULTS)

Cécile Dartyge — Katalin Gyarmati — András Sárközy

ABSTRACT. In 1964 K. F. Roth initiated the study of irregularities of dis-
tribution of binary sequences relative to arithmetic progressions and since that
numerous papers have been written on this subject. In the applications one needs
binary sequences which are well distributed relative to arithmetic progressions,
in particular, in cryptography one needs binary sequences whose short subse-
quences are also well-distributed relative to arithmetic progressions. Thus we

introduce weighted measures of pseudorandomness of binary sequences to study
this property. We study the typical and minimal values of this measure for binary
sequences of a given length.

Communicated by Georg Nowak

1. Introduction

K. F. R o t h [13] was the first who studied the irregularities of distribution
of sequences relative to arithmetic progressions in 1964. Among others, it follows
from his results that

������� 1 (R o t h [13])� If N,Q ∈ N with Q ≤ N1/2 and EN = (e1, e2, . . .
. . . , eN ) ∈ {−1, 1}N, then there are integers a, t, q such that

1 ≤ a ≤ a+ (t− 1)q ≤ N, q ≤ Q (1)
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and
∣∣∣∣∣
t−1∑
j=0

ea+jq

∣∣∣∣∣ > c1Q
1/2

with some absolute constant c1.

Taking here Q = [N1/2] we get

����		
�� 1 (R o t h)� If N ∈ N and EN = (e1, e2, . . . , eN ) ∈ {−1, 1}N, then
there are integers a, t, q such that (1) holds,

q ≤ N1/2

and ∣∣∣∣∣
t−1∑
j=0

ea+jq

∣∣∣∣∣ > c2N
1/4.

Since that numerous papers have been written on related problems; see the
most recent papers [4], [12], [15], [16], [17] and the reference lists at the end of
these papers. In particular, improving on a result of B e c k [3], M a t o u š e k
and S p e n c e r [10] proved

������� 2 (M a t o u š e k and S p e n c e r [10])� If N ∈ N, then there exists
a sequence EN = (e1, e2, . . . , eN) ∈ {−1, 1}N such that for every a, t, q satisfy-
ing (1) we have ∣∣∣∣∣

t−1∑
j=0

ea+jq

∣∣∣∣∣ < c3N
1/4

with some absolute constant c3.

This shows that Theorem 1 is sharp apart from the constant factor c1.

Binary sequences with strong pseudorandom properties play a crucial role
in cryptography, e.g., they are used as key in the frequently used encrypting
system called Vernam cipher. Thus in [11] M a u d u i t and S á r k ö z y initiated
a new constructive and quantitative approach to study pseudorandom binary
sequences

EN = (e1, e2, . . . , eN) ∈ {−1, 1}N . (2)

In particular, they introduced the following measures of pseudorandomness of
sequences of this type:

��
������� 1� The well-distribution measure of the sequence (2) is de-
fined by

W (EN ) = max
a,b,t

∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣,
where a, b, t ∈ N and 1 ≤ a ≤ a+ (t− 1)b ≤ N .
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��
������� 2� For k ∈ N, k ≤ N the correlation measure of order k of the
sequence (2) is defined as

Ck(EN ) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1
en+d2

· · · en+dk

∣∣∣∣∣,
where the maximum is taken over all D = (d1, d2, . . . , dk) and M ∈ N such that
0 ≤ d1 < d2 < · · · < dk ≤ N −M .

Then the sequence EN ∈ {−1, 1}N is said to possess strong pseudorandom
properties or, briefly, it is considered a “good” PR sequence if both W (EN ) and
Ck(EN ) (at least for “small” k) are small. This terminology is justified by the
fact that for a “truly” random sequence EN ∈ {−1, 1}N , i. e. , for choosing each
EN ∈ {−1, 1}N with probability 1

2N both W (EN ) and (for fixed k) Ck(EN )

are “small”: they are expected to be around N1/2 which is much smaller than
the trivial upper bound N . This was proved by C a s s a i g n e, M a u d u i t and
S á r k ö z y [5]:

������� 3 (C a s s a i g n e, M a u d u i t and S á r k ö z y [5])� For all ε > 0
there are numbers N0 = N0(ε) and δ = δ(ε) such that for N > N0 we have

P
(
W (EN ) > δN1/2

)
> 1− ε

and
P
(
W (EN ) > 6(N logN)1/2

)
< ε.

������� 4 (C a s s a i g n e, M a u d u i t and S á r k ö z y [5])� For all k ∈ N,
k ≥ 2 and ε > 0 there are numbers N0 = N0(ε, k) and δ = δ(ε, k) such that for
N > N0 we have

P
(
Ck(EN ) > δN1/2

)
> 1− ε

and
P
(
Ck(EN ) > 5(kN logN)1/2

)
< ε.

(Later these results have been sharpened by A l o n, K o h a y a k a w a,
M a u d u i t, M o r e i r a and R ö d l [9], [2] and A i s t l e i t n e r [1].)

In the last 15 years many papers have been written on the measures of
pseudorandomness of binary sequences and many “good” PR binary sequences
have been constructed; a survey of all these results has been presented by
G y a r m a t i [8].

By using the notation introduced in Definition 1, Theorems 1 and 2 can be
rewritten in the following form:

c1N
1/4 < min

EN∈{−1,1}N
W (EN ) < c3N

1/4. (3)
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Comparing the upper bound here with Theorem 3, we may observe that the
minimum of W (EN ) (which is around N1/4) is much smaller than its typical
value (which is around N1/2).

Note that the proof of the upper bound in (3) given by M a t o u š e k and
S p e n c e r [10] is an existence proof, and no constructive proof is known. Indeed,
the best known construction (presented in [7]) gives only

W (EN ) < c4N
1/3(logN)2/3. (4)

In the sequel of this paper we will slightly improve on this construction.

In this paper our goal is to study the following problem:

Suppose we need a PR binary sequence of unknown length L. If we can es-
timate L reasonably well, say, we can find U such that U < L < 2U , then
there is no problem: we construct a “good” PR sequence EN = (e1, e2, . . . , eN )
with 2U < N < 4U (it is not too difficult to construct such a sequence), and
then keeping only the first L elements of the sequence for any U < L < 2U :
EL = (e1, e2, . . . , eL), we get a “good” PR sequence. Namely it follows from the
definitions of the measures W and Ck that if EN is “good”, 0 ≤ n < n+M ≤ N
and M � N (or just M > N1−ε), then (en+1, en+2, . . . , en+M) is also “good”.
If however, we cannot say more than, say, U < L < U 100, then this approach
does not work; the problem is that if M < N1/2 and 1 ≤ n < n + M ≤ N ,
then the “good” PR properties of (e1, e2, . . . , eN) are not enough to guarantee
that (en+1, en+2, . . . , en+M) is also “good”; indeed, even en+1 = en+2 = · · · =
en+M = 1 is possible.

This problem could be handled easily if we could construct sequences EN =
(e1, e2, . . . , eN) ∈ {−1, 1}N such that for every M > N ε, 1 ≤ n < n + M ≤
N the subsequence (en+1, en+2, . . . , en+M ) is “good”, its PR measures W , Ck

are less than M 1/2+ε, or just less than M 1−c would be a great step. But are
there sequences EN of this type? How far can we get in this direction? Here we
will study these questions focusing on the measure W ; although the correlation
measure also will get into the picture, we will focus on it in a subsequent paper.

First in Section 2, we will introduce a weighted version Wα of the measure
W for studying these problems. In Section 3, we will estimate Wα for a “truly”
random sequence EN ∈ {−1,+}N . In Section 4, we will formulate a conjecture
on the minimal value of Wα(EN ) over all EN ∈ {−1, 1}N , and in Sections 4
and 5 we will prove partial results towards the lower bound in this conjecture.

In the sequel of this paper, we present constructive bounds for minWα(EN ).
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2. The weighted well-distribution measures

In the rest of this paper, we will also use the following notations and defini-
tions: if EN is the binary sequence in (2), n ∈ {0, 1, . . . , N − 1}, M ∈ N and
0 ≤ n < n+M ≤ N , then we write

EN (n,M ) = (en+1, en+2, . . . , en+M).

��
������� 3� If EN is the binary sequence in (2) and 0 ≤ α ≤ 1/2, then the
weighted α-well-distribution measure of EN is defined as

Wα(EN ) = max
0≤n<n+M≤N

M−αW
(
EN (n,M )

)
.

Then, clearly, we have

W0(EN ) = W (EN ). (5)

For 0 ≤ α ≤ 1/2 we will write

mα(N) = min
EN∈{−1,1}N

Wα(EN ).

Our main goals are to study Wα(EN ) for fixed α and a “truly” random EN ∈
{−1, 1}N, and to estimate mα(N) for fixed α. However, we will also need a
modified version of the measure introduced in Definition 3.

Consider again the binary sequence EN in (2) and for a, b,M ∈ N, 1 ≤ a ≤
a+ (M − 1)b ≤ N , write

U (EN ,M, a, b ) =

M−1∑
j=0

ea+jb.

��
������� 4� If EN is the binary sequence in (2) and 0 ≤ α ≤ 1/2, then the
modified weighted α-well-distribution measure of EN is defined as

W̃α(EN ) = max
0<M<N

(
M−α max

1≤a≤a+(M−1)b≤N

∣∣U (EN ,M, a, b)
∣∣).

For 0 ≤ α ≤ 1/2 we write

m̃α(N) = min
EN∈{−1,1}N

W̃α(EN ).

Clearly, we have

W0(EN ) = W̃0(EN ) for all EN ∈ {−1, 1}N
and

m0(N) = m̃0(N) for all N ∈ N.
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3. The weighted α-well-distribution measure
for random binary sequences

We will show that Theorem 3 can be extended to Wα(EN ) with 0 ≤ α ≤ 1/2.

������� 5� Assume that 0 ≤ α ≤ 1/2. Then for all ε > 0 there are numbers
N0 = N0(ε) and δ = δ(ε) such that if N > N0 then for a random sequence
EN ∈ {−1, 1}N (i.e., choosing each EN ∈ {−1, 1}N with probability 1/2N)
we have

P
(
Wα(EN ) > δN1/2−α

)
> 1− ε (6)

and

P
(
Wα(EN ) > 6(N logN)1/2N−α

)
< ε. (7)

P r o o f o f T h e o r e m 5. For α = 0 the statement of the theorem holds by
Theorem 3 and (5). Thus we may assume that

0 < α ≤ 1/2. (8)

First we will prove (6). By the definitions of W and Wα we have

Wα(EN ) ≥ max
M≤N

M−αW
(
EN (0,M )

) ≥ N−αW (EN ) ≥ N−α

∣∣∣∣∣
N∑
j=1

ej

∣∣∣∣∣.
Thus it suffices to prove that

P

⎛⎝N−α

∣∣∣∣∣
N∑
j=1

ej

∣∣∣∣∣ > δN1/2−α

⎞⎠ > 1− ε

or, in equivalent form,

P

⎛⎝∣∣∣∣∣
N∑
j=1

ej

∣∣∣∣∣ > N1/2

⎞⎠ > 1− ε.

This is inequality (2.7) in [5] which was proved there (under the same conditions)
and this completes the proof of (6).

Now we prove (7). This could be proved in an elementary manner like (2.2)
in [5] but this would be rather lengthy; it is much simpler to use Chernoff’s
inequality [6] (see also [18]). We will apply the following special case of this
inequality.
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����
 1� Let X1, X2, . . . , Xk be independent random variables with

P (Xi = 1) = P (Xi = −1) = 1/2 for i = 1, 2, . . . , k

and let X =
∑k

i=1Xi. Then for all A > 0 we have

P (|X| ≥ A) ≤ 2e−A2/2k.

(See the section “Better Chernoff bounds for some special cases” in [18].) By Def-
inition 3 we have

P
(
Wα(EN ) > 6(N logN)1/2N−α

)
= P

(
max

0≤n<n+M≤N
M−αW

(
EN (n,M )

)
> 6(N logN)1/2N−α

)
≤

∑
0≤n<n+M≤N

P
(
M−αW

(
EN (n,M )

)
> 6(N logN)1/2N−α

)
=

∑
0≤n<n+M≤N

P
(
W
(
EN (n,M )

)
> 6(N logN)1/2(M/N)α

)

=
∑

0≤n<n+M≤N

P

(
max

1≤a<a+(t−1)b≤M

∣∣∣∣∣
t−1∑
j=0

en+a+jb

∣∣∣∣∣ > 6(N logN)1/2(M/N)α

)

≤
∑

0≤n<n+M≤N

∑
1≤a<a+(t−1)b≤M

P

⎛⎝∣∣∣∣∣
t−1∑
j=0

en+a+jb

∣∣∣∣∣ > 6(N logN)1/2(M/N)α

⎞⎠ .

(9)

It remains to estimate the general term of this double sum. This can be done by
using Lemma 1 with t, en+a+(i−1)b (for i = 1, 2, . . . , t) and 6(N logN)1/2(M/N)α

in place of k, Xi and A, respectively.

We obtain that

P

⎛⎝∣∣∣∣∣
t−1∑
j=0

en+a+jb

∣∣∣ > 6(N logN)1/2(M/N)α

⎞⎠ ≤ 2e−18N(logN)(M/N)2α/t. (10)

It follows from our conditions on a, b and t that

t− 1 ≤ (t− 1)b ≤ M − a ≤ M − 1
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whence t ≤ M . Thus we get from (10) that

P

⎛⎝∣∣∣∣∣
t−1∑
j=0

en+a+jb

∣∣∣∣∣ > 6(N logN)1/2(M/N)α

⎞⎠ ≤ 2e−18(logN)(M/N)2α−1

≤ 2e−18 logN ≤ 1

N17
.

(11)

In (9) we have 0 ≤ n ≤ N , 1 ≤ M ≤ N and 1 ≤ a, b, t ≤ M ≤ N so that each of
the parameters n,M, a, b and t can be chosen in at most N ways. Thus it follows
from (9) and (11) that

P
(
Wα(EN ) > 6(logN)1/2N−α

)
≤

∑
0≤n<n+M≤N

∑
1≤a<a+(t−1)b≤M

1

N17

≤ 1

N12
< ε

if N is large enough which proves (7) and this completes the proof of Theorem 5.
�

4. A conjecture on the minimum of Wα(EN) and
a related lower bound

By Corollary 1, there exists c2 > 0 such that for any binary sequence satisfy-
ing (2) there are integers a, t, q such that (1) holds with q ≤ N1/2 and∣∣∣∣∣

t−1∑
j=0

ea+jq

∣∣∣∣∣ > c2N
1/4.

Then we have for α ∈ [0, 1/2]

1

tα

∣∣∣∣∣
t−1∑
j=0

ea+jq

∣∣∣∣∣ > c2N
1/4t−α � N1/4−α.

By this observation we deduce that:

mα(N) � N1/4−α for α ∈ [0, 1/2]. (12)

We conjecture that this estimate for the minimum of Wα(N) can be sharpened
in the following way:

���������� 1� For 0 ≤ α ≤ 1/2 we have

c5N
1/4−α/2 < mα(N) < c6N

1/4−α/2. (13)
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Note that by Corollary 1 and (5) this inequality holds for α = 0. Unfortu-
nately, we have not been able to improve (12); the difficulty is that we have
not been able to adapt Roth’s method used in [13]. Thus instead of estimating

Wα(EN ) we will give a lower bound for W̃α(EN ) (which can be handled more
easily) as a partial result. Some other partial results will be proved in the next
section and in the sequel of this paper.

Adapting Roth’s method we will prove

������� 6� For α ∈ [0, 1/2], α > 0 and N ∈ N, N > N0(ε), we have

m̃α(N) ≥
(

2

π
√
5
− ε

)
N1/4−α/2.

P r o o f o f T h e o r e m 6. The main tool is the following result of S á r k ö z y
([14] Corollary 4), which was proved there by a generalization of Roth’s argu-
ment.

����
 2 (S á r k ö z y)� If ε > 0, N > N0(ε) is a positive integer and s1, s2, . . .
. . . , sN a set of N complex numbers, then there exists integers n, q such that
1 ≤ q ≤ √

N and∣∣∣D (n, q, [√N/2
])∣∣∣ ≥ ( 2

π
√
5
− ε

)(
1

N

N∑
m=1

|sm|2
)1/2

N1/4, (14)

where D(n, q, k) is defined by

D(n, q, k) = sn + sn+q + · · ·+ sn+(k−1)q

with si = 0 if i �∈ {1, . . . , N}.
Let ε > 0. We apply this lemma with N > N0(ε) and any sequence EN =

{e1, e2, . . . , eN} ∈ {−1,+1}N (setting also ei = 0 if i /∈ {1, 2, . . . , N}) in place

of s1, s2, . . . , sN . Then there exist integers n0 and q0 ≤ √
N such that

∣∣∣D (n0, q0,
[√

N/2
])∣∣∣ =

∣∣∣∣∣∣∣
[
√
N/2]−1∑
i=0

en0+iq0

∣∣∣∣∣∣∣ ≥
(

2

π
√
5
− ε

)
N1/4. (15)

Define the integers a,M by{
n0, n0 + q0, n0 + 2q0, . . . , n0 +

(
[
√
N/2]− 1

)
q0

}
∩ {1, 2, . . . , N} ={

a, a+ q0, a+ 2q0, . . . , a+ (M − 1)q0
}
. (16)

Then, clearly, we have

1 ≤ M ≤
√
N/2, (17)
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1 ≤ a ≤ a+ (M − 1)q0 ≤ N (18)

and

en0+iq0 = 0 if i ∈ Z, n0 + iq0 /∈ {1, 2, . . . , N}. (19)

It follows from (16), (18) and (19) that

∣∣∣D (n0, q0,
[√

N/2
])∣∣∣ =

∣∣∣∣∣∣∣
[
√
N/2]−1∑
i=0

en0+iq0

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
M−1∑
j=0

ea+jq0

∣∣∣∣∣∣
= |U (EN ,M, a, q0)| (20)

(where U (EN ,M, a, b) is the notation used in Definition 4). By (15), (17), (18),

(20) and the definition of W̃α(EN ) we have

W̃α(EN ) ≥ M−α |U (EN ,M, a, b)| ≥
(√

N

2

)−α(
2

π
√
5
− ε

)
N1/4

≥
(

2

π
√
5
− ε

)
N1/4−α/2

for every EN ∈ {−1,+1}N which, by the definition of m̃α(N), completes the
proof of the theorem. �

5. Lower bound for Wα(EN) for almost all EN

In this section we will present a lower bound for Wα(EN ) for all α and
EN ∈ {−1, 1}N , and from this we will deduce a lower bound for Wα(EN ) for
almost all EN ∈ {−1, 1}N which is smaller than the conjectured lower bound
in Conjecture 1 by just a logarithm factor.

������� 7� For 0 ≤ α ≤ 1/2 and N ∈ N we have

Wα(EN ) ≥
√

2

3

[
N

4C2(EN )

]1/2−α

. (21)

����		
�� 2� For all ε > 0 there is a number N0 such that for N ∈ N, N > N0

we have:

P

(
Wα(EN ) ≥

√
2

3

[
1

20
√
2

( N

logN

)1/2]1/2−α
)

≥ 1− ε. (22)
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P r o o f o f T h e o r e m 7. Define k by

k =

[
1

4

N

C2(EN )

]
,

and consider the sum

Z :=

N−k∑
n=0

(en+1 + en+2 + · · ·+ en+k)
2.

It follows from the definition of Wα(EN ) that

|en+1 + · · ·+ en+k|
kα

≤ Wα(EN ),

for all 0 ≤ n ≤ N . Thus we have

Z ≤ (N − k + 1)k2αWα(EN )2. (23)

On the other hand, clearly we have

Z =

N−k∑
n=0

(en+1 + · · ·+ en+k)
2

=

N−k∑
n=0

k +

N−k∑
n=0

∑
1≤i �=j≤k

en+ien+j

≥ (N − k + 1)k −
∑

1≤i �=j≤k

∣∣∣∣∣
N−k∑
n=0

en+ien+j

∣∣∣∣∣
≥ (N − k + 1)k − k2C2(EN ).

(24)

It follows from (23) and (24) that

(N − k + 1)k2αWα(EN )2 ≥ Z ≥ (N − k + 1)k − k2C2(EN )

whence
Wα(EN )2 ≥ k1−2α − k2−2α C2(EN )

N − k + 1
. (25)

Here we have

C2(EN )

N − k + 1
=

C2(EN )

N + 1−
[

N
4C2(EN )

] ≤ C2(EN )
3N
4

=
4

3

1
N

C2(EN )

≤ 1

3k
.

Thus we obtain from (25) that

Wα(EN )2 ≥ k1−2α − k1−2α

3
=

2

3
k1−2α
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whence

Wα(EN ) ≥
√

2

3

[
N

4C2(EN )

]1/2−α

,

which completes the proof of the theorem. �

P r o o f o f C o r o l l a r y 2. By the second inequality in Theorem 4 for

N > N0(ε)

we have

P (C2(EN ) ≤ 5
√
2(N logN)1/2) ≥ 1− ε.

Thus it follows from (21) with probability greater than or equal to 1− ε that

Wα(EN ) ≥
√

2

3

[
N

4 · 5√2(N logN)1/2

]1/2−α

=

√
2

3

⎡⎣ 1

20
√
2

(
N

logN

)1/2 ⎤⎦1/2−α

which completes the proof of the corollary. �
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[16] VALKÓ, B.: On irregularities of sums of integers, Acta Arith. 92 (2000), 367–381.
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H-1117 Budapest
HUNGARY

E-mail : gykati@cs.elte.hu

András Sárközy
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