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p-ADIC VALUATION OF EXPONENTIAL SUMS

IN ONE VARIABLE ASSOCIATED TO BINOMIALS

Francis N. Castro — Raúl Figueroa — Puhua Guan

ABSTRACT. In this paper we compute the p-adic valuation of exponential sums
associated to binomials F (X) = aXd1 + bXd2 over Fp. In particular, its p-adic
valuation is constant for a, b ∈ F∗

p . As a byproduct of our results, we obtain a
lower bound for the sizes of value sets of binomials over Fq .

Communicated by Arne Winterhof

1. Introduction

Exponential sums have been applied in many areas of mathematics and their
p-adic valuation is used as a tool to characterize important properties of objects
in applied mathematics. Many authors have studied the p-adic valuation of the
roots of the L-function associated to the exponential sum. This information is
encoded in the Newton polygon of the L-function ([1, 2, 5, 6, 18, 21, 23, 24]).
As the value of an exponential sum is equal to the sum of the roots of the asso-
ciated L-function, any estimate on the roots implies an estimate for the p-adic
valuation of the exponential sum. In this paper we study the p-adic valuation of
exponential sums associated to polynomials over Fp when p is odd, i.e., the p-adic
valuation of the sum of the roots of the L-function associated to the exponential
sum.

In general, there are good estimates for the p-adic valuation of exponential
sums ([1, 9, 14, 15, 19]). We are interested in computing the p-adic valuation
of exponential sums associated to polynomials in one variable over the prime
field Fp. This is a difficult problem in general, therefore, in this paper, we study
the p-adic valuation of exponential sums associated to binomials. The p-adic
valuation of exponential sums associated to monomials is well known; the next
simplest case is exponential sums associated to binomials.
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In this paper we compute the p-adic valuation of families of exponential
sums associated to binomials. In particular, the p-adic valuation is computed
for exponential sums associated to F (X) = aXd1 + bXd2 , when a, b ∈ F∗

p , and

max{d1, d2} ≤
√
p− 1. In the case when (d1−d2) divides (p−1), we completely

characterize the p-adic valuation of exponential sums associated to binomials.

Let up(F ) be the smallest positive integer k such that
∑

x∈Fq
F (x)k �= 0 in

Fq(q = pf ). If up(F ) does not exist, define up(F ) = ∞. In [20], W a n, S h i u e,
C h e n established the following lower bound for the size of the value set VF

of a polynomial F over a finite field Fq: if up(F ) < ∞, then |VF | ≥ up(F ) + 1.
up(F ) is always finite for the prime field Fp (see Remark 2.3 in [20]). Recently,
M u l l e n, W a n, W a n g generalized this result to polynomials in several vari-
ables ([17]). We compute up(aX

d1 + bXd2) for d1 and d2 satisfying some nat-
ural conditions. In particular, up(aX

d1 + bXd2 ) is computed explicitly when
max{d1, d2} ≤

√
p− 1.

2. Preliminaries

Given j, ji integers such that 0 ≤ ji < p and j =
∑r

i=0 jip
i, we define the

p-weight of j by σp(j) =
∑r

i=0 ji, and ρp(j) =
∏r

i=0 ji!. From now on, we assume

that a polynomial F (X) =
∑N

i=1 aiX
di is a nonconstant polynomial of degree

less than p. In this paper we consider p to be odd.

Let Qp be the p-adic field with ring of integers Zp. Let T denote the Te-
ichmüller representatives of Fp in Qp. Denote by ξ a primitive p-th root of unity

in Qp. Define θ = 1 − ξ and denote by νθ the valuation over θ. Note that

νθ(p) = p− 1 and νp(x) =
νθ(x)
p−1 .

Let φ : Fp → Q(ξ) be a nontrivial additive character. The exponential sum

associated to F (X) =
∑N

i=1 aiX
di is defined as follows

Sp(F ) =
∑
x∈Fp

φ
(
F (x)

)
.

Frequently, we denote Sp(aX
d1 + bXd2) by Sp(d1, d2), where ab �= 0.

Note that if the p-adic valuation of the exponential sum
∑

x∈Fp
φ(F (x)) is a

real number, then Sp(F ) will not be divisible by an arbitrary power of p and
therefore Sp(F ) �= 0. The next theorem gives a bound for the θ-adic valuation
of an exponential sum with respect to θ.
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p-VALUATION OF EXPONENTIAL SUMS

������� 2.1 ([15])� Let F (X) =
∑N

i=1 aiX
di, ai �= 0. If Sp(F ) is the expo-

nential sum
Sp(F ) =

∑
x∈Fp

φ
(
F (x)

)
, (1)

then νθ
(
Sp(F )

)
≥ μp(d1, . . . , dN ), where

μp(d1, . . . , dN ) = min
(j1,...,jN)

({
N∑
i=1

ji | 0 ≤ ji < p

}
+ ε(p− 1)

)
,

for (j1, . . . , jN ) a solution to the modular equation

d1j1 + d2j2 + · · ·+ dN jN ≡ 0 mod p− 1 (2)

and

ε =

{
1 if (j1, . . . , jN ) = (0, . . . , 0),
0, otherwise.

Following the notation in [15], we expand the exponential sum Sp(F ):

Sp(F ) =

p−1∑
j1=0

· · ·
p−1∑
jN=0

[
N∏
i=1

c(ji)

][∑
t∈T

td1j1+···+dN jN

][
N∏
i=1

a′
ji
i

]
, (3)

where a′i’s are the Teichmüller representatives of the coefficients ai of F , and c(ji)
is defined in Lemma 2.3 below. Each solution (j1, · · · , jN ) of (2) is associated
to a term T in the above sum with

νθ(Tj1,...,jN ) = νθ

([
N∏
i=1

c(ji)

][∑
t∈T

td1j1+···+dN jN

][
N∏
i=1

a′
ji
i

])

= νθ

([
N∏
i=1

c(ji)

])
+ νθ

([∑
t∈T

td1j1+···+dN jN

])
+ νθ

([
N∏
i=1

a′
ji
i

])

=

N∑
i=1

σp(ji) + 0 + 0 =

N∑
i=1

ji, (4)

for (j1, . . . , jN ) �= (0, . . . , 0)(see Lemma 2.4).

Sometimes there is not equality in the bound of Theorem 2.1 on the p-adic
valuation of Sp(F ) because it could happen that there is more than one solution

(j1, . . . , jN ) providing the minimum value for
∑N

i=1 ji, for example, when the
associated terms are similar some of them could add to produce higher powers
of θ dividing the exponential sum. In [7, 8, 10], we computed the p-adic valuation
of some exponential sums over finite fields for special polynomials. Our results
of this paper generalize and improve the results of [8].
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���	�
 2.2� In the case that there is a unique (j1, . . . , jN ) such that
μp(d1, . . . , dN ) = j1 + · · ·+ jN , then

νθ
(
S(F )

)
= νθ

⎛
⎜⎝ ∑

(j1,...,jN )
d1j1+···+dNjN≡0 mod p−1

Tj1,...,jN

⎞
⎟⎠ = νθ(Tj1,...,jN ))

since

νθ(Tj1,...,jN ) > νθ(Tj1,...,jN )

for any (j1, . . . , jN ) �= (j1, . . . , jN ) and (j1, . . . , jN ) satisfies (2).

From now on, we call any solution (j1, · · · , jN ) of (2) that has νθ(T ) =
μp(d1, . . . , dN ) of minimum value a minimal solution. We need to use the fol-
lowing lemma together with Stickelberger’s Theorem([3]) to compute the p-adic
valuation.

����	 2.3� There is a unique polynomial C(X) =
∑p−1

j=0 c(j)X
j ∈ Qp(ξ)[X]

of degree p− 1 such that
C(t) = ξt for all t ∈ T .

Moreover, the coefficients of C(X) satisfy

c(0) = 1

(p− 1)c(p− 1) = −p

(p− 1)c(j) = g(j) for 0 < j < p− 1, (5)

where g(j) is the Gauss sum,
g(j) =

∑
t∈T ∗

t−jξt.

������� 2.4 (S t i c k e l b e r g e r [16])� For 0 ≤ j < p− 1,

g(j)ρp(j)

θσp(j)
≡ −1 mod θ. (6)

Now we state some theorems about polynomials that are going to be used in
the following sections.

������� 2.5 ( [12])� The polynomial F (X) in one variable over Fq(q = pf )
is a permutation polynomial of Fq if and only if Sq(F ) =

∑
x∈Fq

φ
(
F (x)

)
= 0

for all nontrivial additive characters φ of Fq.

���	�
 2.6� Theorem 2.5 implies that if Sq(F ) �= 0 for at least one nontrivial
additive character, then F is not a permutation polynomial of Fq. Using the
result of C o n w a y- J o n e s in [11], we obtain that if Sp(F ) = 0 for a nontrivial
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additive character φ of Fp, then F is a permutation of Fp. Note this is only true
for the ground field. For example,∑

x∈F32

(−1)Tr(x7+(α+1)x) = 0, and |VF | = 21, where α5 + α2 + 1 = 0.

We extend the definition of μp(d1, d2) for field extensions of Fp. Let

μq(d1, d2) = min
0≤j1,j2≤q−1

j1+j2 �=0

{
j1 + j2 | d1j1 + d2j2 ≡ 0 mod q − 1, q = pf

}
. (7)

The conclusion of Theorem 2.1 is false for q = pf > p (see [15] for the correct
version of the theorem).

Now we state a relation between up(F ) and μq(d1, d2).

����	 2.7� With the above notation up(F ) ≥ μq(d1, d2). In the case that equa-
tion (2) has a unique minimal solution, we have up(F ) = μp(d1, d2).

P r o o f. If up(F ) does not exist, then up(F ) ≥ μq(d1, d2). We assume that
up(F ) < ∞. We are going to prove the lemma for binomials but the proof
is similar for general polynomials. The terms of (axd1 + bxd2)m are of the form(

m
j1,j2

)
aj1bj2xd1j1+d2j2 with j1 + j2 = m. We have that∑

x∈Fq

(
m

j1, j2

)
aj1bj2xd1j1+d2j1 = 0 if d1j1 + d2j1 �≡ 0 mod q − 1.

In the case d1j1 + d2j1 ≡ 0 mod q − 1, we have that
∑

x∈Fq
aj1bj2xd1j1+d2j1 �=

0. Hence up(F ) has to be greater or equal than μq(d1, d2) since μq(d1, d2) is

the smallest positive integer such that (axd1 + bxd2)μq(d1,d2) contains terms of
x with exponent congruent to 0 mod q − 1. Now we consider the case when
q = p and equation (2) has a unique minimal solution. When we expand (axd1 +
bxd2)μp(d1,d2) many terms of x with exponents congruent to 0 mod p − 1 could
appear and its sum could be equal to zero. In the case that equation (2) has
a unique minimal solution, we only have one term congruent to 0 mod p − 1.
Hence,

∑
x∈Fp

(axd1 + bxd2)μp(d1,d2) �= 0. Therefore, up(F ) = μp(d1, d2). �

���	�
 2.8� The condition of a unique minimal solution of (7) does not
guarantee up(F ) = μq(d1, d2) since the coefficient of xq−1 in the expansion of

(axd1+bxd2)μq(d1,d2) could be zero. This can happen when q = pf > p. For exam-
ple, we have that the modular equation 11j1+3j2 ≡ 0 mod 127 has a unique min-
imal solution (11, 2). Hence μ127(11, 2) = 13. We have that

∑
x∈F128

(x11+x3)13 =∑
x∈F128

(x111 + x103 + x79 + x71 + x47 + x39 + x16 + x8) = 0 in F128 since the

coefficient of the monomial x127 is equal to
(
13
11

)
= 0 in F128. Actually the value

of up(F ) = 29.
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3. p-adic Valuation of Sp(d1, d2)

In this section we compute the p-adic valuation of Sp(d1, d2) under some
natural conditions. In particular, we compute the divisibility of Sp(d1, d2) for
max{d1, d2} ≤

√
p− 1. Also, we obtain a lower bound for the value sets of bino-

mials over finite fields.

Now we state an elementary lemma that is going to be used in the following
lemma.

����	 3.1� Let d1 > d2 be positive integers, and p − 1 ≡ s1 mod d1, where
s1 is the smallest non-negative integer satisfying the modular equation. Then
ld1 ≡ −s1 mod d2 is solvable if and only if gcd(d1, d2) divides p− 1.

P r o o f. We have that ld1 ≡ −s1 mod d2 is solvable if and only if gcd(d1, d2)
divides −s1. But we have gcd(d1, d2) divides −s1 if and only if gcd(d1, d2)
divides p− 1. �

The next elementary lemma computes μp(d1, d2) for the modular equation
d1i + d2j mod p− 1. We did not find a proof of the following lemma, hence we
state the lemma and include its proof. The proof of the main theorem of this
paper relies on the following elementary result.

����	 3.2� Let d1 > d2 be positive integers, gcd(d1, d2) divides p − 1 and
p − 1 ≡ s1 mod d1, where s1 is the smallest non-negative integer satisfying the
modular equation. Let l1 be a non-negative integer satisfying

l1 = min{l | ld1 ≡ −s1 mod d2}. (8)

If l1 satisfies

l1 ≤
⌊
p− 1

d1

⌋
and d1 − d2 ≤ p− 1

d1
, (9)

then the modular equation

d1i+ d2j ≡ 0 mod p− 1 (10)

has a unique minimal solution given by (i1, j1) = (
p−1
d1

� − l1,
s1+l1d1

d2
). Further-

more, μp(d1, d2) = min{i+ j | d1i+ d2j ≡ 0 mod p− 1, (i, j) �= (0, 0)} = i1 + j1,
where

i1 =

⌊
p− 1

d1

⌋
− l1 and j1 =

s1 + l1d1
d2

. (11)
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P r o o f. The assumption that gcd(d1, d2) divides p−1 and Lemma 3.1 guarantee
that l1 exists, so

l1 = min {l : ld1 + s1 ≡ 0 mod d2}

= min

{
l : ld1 +

(
p− 1−

⌊p− 1

d1

⌋
d1

)
≡ 0 mod d2

}

= min

{
l : p − 1 + d1

(⌊p− 1

d1

⌋
− l

)
≡ 0 mod d2

}
,

where the minimizations are over nonnegative integers. We can set

i1 =
⌊
p−1
d1

⌋
− l1, j1 = p−1−i1d1

d2
= p−1−d1�(p−1)/d1�+d1l1

d2
= s1+d1l1

d2
,

so as to have d1i1 + d2j1 = p − 1. We note that l1 < d2 since it is the least
nonnegative integer satisfying a congruence modulo d2, and s1 < d1 for similar
reason. Thus

j1 < d1(l1 + 1)/d2 and so j1 < d1. (12)

We shall show that (x, y) = (i1, j1) is the unique minimizer of x+y among pairs
of nonnegative integers satisfying the congruence d1x + d2y ≡ 0 mod p − 1. So
suppose we have a nonnegative pair (i, j) with d1i + d2j = T (p − 1) for some
integer T ≥ 1 and suppose that i + j ≤ i1 + j1. We shall show that in fact
(i, j) = (i1, j1).

We note that d1(Ti1)+d2(Tj1) = T (p−1), and any other i, j with d1i+d2j =
T (p− 1) must be of the form i = Ti1+(ud2/g) and j = Tj1− (ud1/g), for some
integer u, where g = gcd(d1, d2). So we write our pair (i, j) in this way. Then

0 ≤ i1 + j1 − (i+ j) = −(T − 1)(i1 + j1) +
(
u(d1 − d2)/g

)
,

and thus (T − 1)(i1 + j1) ≤ u(d1 − d2)/g. On the other hand, the fact that j is
nonnegative forces (u/g) ≤ Tj1/d1. Combining these, we obtain

(T − 1)(i1 + j1) ≤ Tj1(d1 − d2)/d1,

which means that Td1i1 + Td2j1 ≤ d1(i1 + j1), that is, T (p− 1) ≤ d1(i1 + j1),
or equivalently

T (p− 1) ≤ d1i1 + d2j1 + (d1 − d2)j1 = p− 1 + (d1 − d2)j1,

so that (T −1)(p−1) ≤ (d1−d2)j1. Now we know that d1−d2 ≤ (p−1)/d1 from
our given assumptions and j1 < d1 by (12), so we have (T − 1)(p− 1) < p − 1,
which forces T = 1.

Thus i = i1+(ud2/g) and j = j1−(ud1/g) and d1i+d2j = d1i1+d2j1 = p−1
and i+ j = i1 + j1 − (u(d1 − d2)/g). Since we have assumed that i+ j ≤ i1 + j1,
this forces u ≥ 0. So then i ≥ i1 and we can set l = 
(p−1)/d1�− i, which is less
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than or equal to l1 = 
(p−1)/d1�−i1. Furthermore, since d1i ≤ d1i+d2j = p−1,
we know that i ≤ 
(p− 1)/d1�. So l is nonnegative. Furthermore

p− 1− d1

(⌊p− 1

d1

⌋
− l

)
= p− 1− d1i1 = d2j ≡ 0 mod d2

Thus by the minimality of l1, we have l = l1, which means i = i1. This implies
u = 0 and so j = j1. �

���	�
 3.3� Lemma 3.2 can be modified to be applied when gcd(d1, d2) � p−1.

Let g = gcd(d1,d2)
gcd(d1,d2,p−1) . Then equation (10) is equivalent to(

d1
g

)
i+

(
d2
g

)
j ≡ 0 mod p− 1.

Note that gcd
(
d1

g , d2

g

)
| (p− 1). Hence μp(d1, d2) = μp

(
d1

g , d2

g

)
.

Now, we state the main result of this section.

������� 3.4� With the same notation and assumptions as in Lemma 3.2, we
have

(1) νθ
(
Sp(d1, d2)

)
=
⌊
p−1
d1

⌋
+ s1+l1(d1−d2)

d2

(2) p > |VaXd1+bXd2 | ≥
⌊
p−1
d1

⌋
+ s1+l1(d1−d2)

d2
+ 1.

P r o o f. Now we prove the first part of the theorem. Combining Remark 2.2 and
the uniqueness of Lemma 3.2, we obtain that the p-adic valuation:

νθ
(
Sp(d1, d2)

)
= μp(d1, d2).

Also Lemma 3.2 implies that μp(d1, d2) = 
p−1
d1

�+ s1+l1(d1−d2)
d2

. The second part
of the theorem follows substituting

νp(d1, d2) =

⌊
p− 1

d1

⌋
+

s1 + l1(d1 − d2)

d2

in Lemma 2.7 and applying the result of W a n, S h i u e, C h e n [20]. �

Those conditions of the Theorem 3.4 seem artificial but will lead to the cal-
culation of p-adic valuation of exponential sums under natural conditions.

In the following corollary we impose conditions on d1 and d2 such that we
can apply Theorem 3.4.

����	�� 3.5� If d1 ≤
√
p− 1 and gcd(d2, d1) = 1, then

νθ
(
Sp(d1, d2)

)
=

⌊
p− 1

d1

⌋
+

s1 + l1(d1 − d2)

d2
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and

p > |VaXd1+bXd2 | ≥
⌊
p− 1

d1

⌋
+

s1 + l1(d1 − d2)

d2
+ 1.

P r o o f. The condition d1 ≤
√
p− 1 implies that l1 ≤ 
p−1

d1
� and d1 − d2 ≤ p−1

d1
.

If gcd(d2, d1) = 1, then there exists l1 in Lemma 3.2. Hence applying Lemma
we obtain desired result. �
��	��� 3.6� Let p = 619, d1 = 27, d2 = 23. The conditions of Theorem 3.4
are satisfied since 
61827 � = 22, s1 = 24, j1 = 24, l1 = 17 and 17 < 22, 22 > 4 =
27 − 23. In this case, we have that νθ(S619(27, 23)) = 22 − 17 + 21 = 26 and
|VX27+bX23 | ≥ 27. Corollary 2.5 in [20] implies that |VX27+bX23 | ≥ 24.

���	�
 3.7� Theorem 3.4 can be modified to compute the p-adic valuation
when gcd(d1, d2) � p− 1 using Remark 3.3.

��	��� 3.8� We want to compute the p-adic valuation of the exponential sum
S67(35, 5) for p = 67. Note that 5 � 66. Using Remark 3.3, the modular equation
associated to S67(35, 5) is 7i + j mod 66. Now applying Lemma 3.2, we obtain
that νθ(S67(35, 5)) = 12.

Now, we apply Lemma 3.2 to give a lower bound to the value sets of binomials
over Fq.

������� 3.9� With the same notation and assumptions as in Lemma 3.2, we
have

|VaXd1+bXd2 | ≥ up(F ) + 1 ≥
⌊
q − 1

d1

⌋
+

s1 + l1(d1 − d2)

d2
+ 1,

whenever up(F ) < ∞.

P r o o f. Lemma 3.2 is true substituting p−1 by q−1. Hence up(F ) ≥ νp(d1, d2) =


 q−1
d1

� + s1+l1(d1−d2)
d2

by Lemma 2.7. Applying the result of W a n, S h i u e,

C h e n ([20]), we obtain |VaXd1+bXd2 | ≥ up(F )+1 ≥ 
 q−1
d1

�+ s1+l1(d1−d2)
d2

+1. �

��	��� 3.10� Consider the polynomial F (X) = X11 + aX over F128. Using
Theorem 3.9, we have that |VF | ≥ 18.

���	�
 3.11� In [5], B l a c h e, F é r a r d, Z h u state the following conjecture:
Let ε > 0 and F (X) be a polynomial of degree d over the rational numbers.
If νp(Sp(F (X)) > 1

d + ε for infinitely many primes p, then F (X) = P
(
Dn(x, c)

)
for some polynomial P (X) over the rational numbers and a global Dickson poly-
nomial Dn of degree n > 0. Corollary 3.5 implies

lim
p→∞

νθ
(
Sp(aX

d1 + bXd2 )
)

p− 1
=

1

d1
,
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whenever gcd(d1, d2) = 1. For the case when gcd(d2, d1) > 1, we need to use
Remarks 3.3 and 3.7.

���	�
 3.12� In [13], K a t z used p-adic divisibility to obtain restrictions on
families of exponential sums with three values.

Now we state a conjecture.

����������� Let s = gcd(d1 − d2, p − 1). If s ≤
√
p− 1, then the modular

equation (10) has a unique minimal solution.

The following Corollary follows from Theorem 3.4 for d2 = 2.

����	�� 3.13� Let d1 > 1 be a positive integer and p − 1 = 
p−1
d1

�d1 + s1
with 0 ≤ s1 < d1.

(1) If s1 is even and p−1
d1

> d1 − 2, then νθ(Sp(d1, 2)) = 
p−1
d1

�+ s1
2
, and

p > |VaXd1+bX2 | ≥ 
p−1
d1

�+ s1
2 + 1.

(2) If d1s1 is odd and p−1
d1

> d1 − 2, then

νθ(Sp(d1, 2)) =

⌊
p− 1

d1

⌋
− 1 +

s1 + d1
2

,

and

p > |VaXd1+bX2 | ≥
⌊
p− 1

d1

⌋
+

s1 + d1
2

.

P r o o f. The corollary follows considering all the congruent classes modulo d2=2
and noting that l1 ≤ 1 in the case of d2 = 2. �

Now we are going to improve Theorem 3.4 when

d2 | s1 and p− 1 =

⌊
p− 1

d1

⌋
d1 + s1, 0 ≤ s1 ≤ d1 − 1.

������� 3.14� Let d1 > 2 be a positive integer. Let

F (X) = aXd1 + bXd2(ab �= 0) be a polynomial over Fp

and

p− 1 =

⌊
p− 1

d1

⌋
d1 + s1, where 0 ≤ s1 ≤ d1 − 1.

a. If s1 ≤ 
p−1
d1

�, then

νθ
(
Sp(X

d1 + bX)
)
=

⌊
p− 1

d1

⌋
+ s1,

in particular, p > VF ≥
⌊
p− 1

d1

⌋
+ s1 + 1.
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b. If d2 | s1 and (p− 1) ≥ (d1 − d2)
2, then

νθ
(
Sp(X

d1 + bXd2)
)
=

⌊
p− 1

d1

⌋
+

s1
d2

,

in particular, p > VF ≥
⌊
p− 1

d1

⌋
+

s1
d2

+ 1.

P r o o f. If d1 | p − 1, then νθ
(
Sp(X

d1 + aX)
)
= p−1

d1
. From now on, suppose

that d1 � (p− 1). We have p− 1 = d1
p−1
d1

�+ s1 and d1i1+ j1 = c(p− 1) for some

integer c > 1. Suppose that i1 + j1 ≤ 
p−1
d1

�+ s1. We have that

d1i1 + j1 + (d1 − 1)j1 ≤ d1

⌊
p− 1

d1

⌋
+ s1 + (d1 − 1)s1 ⇐⇒

(c− 1)(p− 1) + (d1 − 1)j1 ≤ (d1 − 1)s1 ≤ (d1 − 1)

⌊
p− 1

d1

⌋
< p− 1.

This is a contradiction, part a holds.

Now we are going to prove part b. If d1 | (p − 1), then the theorem holds.

From now on, we assume that d1 � (p − 1). Suppose that i1 + j1 ≤ 
p−1
d1

� + s1
d2
,

where d1i1 + d2j1 = c(p− 1), 
p−1
d1

�d1 + d2(
s1
d2
) = p − 1 for c > 1. This implies

that
d1i1 + d2j1 + (d1 − d2)j1 ≤ d1

⌊
p− 1

d1

⌋
+ s1 + (d1 − d2)

(
s1
d2

)
.

The last inequality can be written as follows:

c(p− 1) + (d1 − d2)j1 ≥ p− 1 + (d1 − d2)
s1
d2

⇐⇒

(c− 1)(p− 1) ≤
(
s1
d2

− j1

)
(d1 − d2). (13)

Therefore s1
d2

> j1. We have i1 > 
p−1
d1

� since i1 ≥ (c− 1)(p−1
d1

). Then

c(p− 1) = (d1 − d2)i1 + d2(i1 + j1) ≤ (d1 − d2)i1 + d2

(⌊
p− 1

d

⌋
+

s1
d2

)

= (d1 − d2)i1 + (p− 1)− (d1 − d2)

⌊
p− 1

d1

⌋
,

p− 1 ≤ (c− 1)(p− 1) ≤ (d1 − d2)

(
i1 −

⌊
p− 1

d1

⌋)
≤ (d1 − d2)

(
s1
d2

− j1

)

≤ (d1 − d2)

(
d1 − 1

d2
− 1

)
≤ (d1 − d2)

(
d1 − 1− d2

d2

)
< (d1 − d2)

2, for j1 ≥ 1.
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This is a contradiction, i.e., (p− 1) < (d1 − d2)
2. If j1 = 0, then

(p− 1) ≤ (c− 1)(p− 1) ≤ (d1 − d2)

(
s1
d2

)
. (14)

We have two cases :

• if s1 = d2, then (p − 1) ≤ (d1 − d2) ≤ (d1 − d2)
2. This is a contradiction

since d1 − d2 < p− 1.

• if 1 < d2 < s1, then

d2 + 1 < d1 → d22 − 1 < d1d2 − d1

→ d1 − 1 < d1d2 − d22

→ d1 − 1

d2
< d1 − d2

→ s1
d2

≤ d1 − 1

d2
< d1 − d2

→ (d1 − d2)
s1
d2

< (d1 − d2)
2

→ (p− 1) ≤ (d1 − d2)
s1
d2

< (d1 − d2)
2.

This is a contradiction. If d2 = 1, then (14) gives the desired contradiction. �

4. Divisibility of Sp(aX
d1 + bXd2) when (d1 − d2) | (p− 1)

In this section, we estimate the p-adic valuation of exponential sums of type
Sp(d1, d2), where d1−d2 divides p−1. This result is an improvement to the results
of Section 3 when d1 − d2 divides p − 1. In particular, we compute the p-adic

valuation of Sp(d1, d2) when d2(d1−d2)
p−1 and d1(d1−d2)

p−1 satisfy certain conditions.

We apply our calculation of μp(d1, d2) to the value sets of these binomials.

Our results of this section allow us to determine families of polynomials that
do not permute Fp. In particular, we obtain that if d1 − 1 divides p − 1 and

F (X) = Xd1 + bX permutes Fp, then d1 ≥
√

2(p− 1). This is an improvement
to the known results in this special case(see [4]).

����	 4.1� Let d1 > d2 be positive integers satisfying gcd(d1, d2) = 1 and
(d1 − d2) | (p− 1). Let ν = (p− 1)/(d1 − d2). Let n0 ≥ 1 be the smallest integer
for which there exists an integer c > 0 such that

n0d2
ν

≤ c ≤ n0d1
ν

. (15)
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Then for the modular equation d1i+ d2j ≡ 0 mod p− 1, we have that :

(1) for each c > 0 satisfying (15), the pair (i, j) with i = cν − n0d2,
j = n0d1 − cν, is a solution of the modular equation and the sum i+ j =
n0(d1 − d2) is the minimal sum.

(2) If d1 > ν and d2/ν ≤ 
d1/ν� − 1, then the modular equation has more
than one solution with minimal sum.

(3) If d1 ≤ ν or if d1 > ν and d2/ν > 
d1/ν� − 1, then there is a unique pair
satisfying the modular equation with minimal sum.

P r o o f. Let (i, j) be any solution of the modular equation d1i+d2j≡0mod p−1,
with i, j ≥ 0, (i, j) �= (0, 0). Let S = i + j and d = d1 − d2. Then (S − j)d1 +
jd2 = c′(p − 1) = c′dν, for some integer c′ > 0. From here, Sd1 = (c′ν + j)d
and S = ((c′ν + j)/d1)d with (c′ν + j)/d1 an integer, since gcd(d1, d) = 1.
Likewise S = ((c′ν − i)/d2)d. Let n0 and c as in the statement of this lemma.
Let i′ = cν − n0d2 and j′ = n0d1 − cν. Then i′ ≥ 0, j′ ≥ 0 and i′ �= 0 or
j′ �= 0 since d1 �= d2. Clearly (i′, j′) is a solution of the modular equation and
i′ + j′ = n0d is the minimal sum.

For the second point, assume d1 > ν. Let d1 = qν + r with q, r integers and
0 ≤ r < ν. When d2/ν ≤ q− 1, we have d1/ν ≥ q > q− 1 ≥ d2/ν so n0 = 1 and
c = q and c = q − 1 satisfy equation (15).

For the third point, assume d1 ≤ ν. If d1 = ν, then d1/ν = 1 > d2/ν, so
c = 1 and n0 = 1. When d1 < ν, we have that ν = qd1 + r, with q, r integers,
0 ≤ r < d1, and (q + 1)d1 < 2ν. If (q + 1)d2 ≤ ν, then (q + 1)d2/ν ≤
1 < (q + 1)d1/ν so n0 = q + 1 and there is a unique c = 1.

In the case that (q + 1)d2 > ν, we have 1 < (q + 1)d2/ν < (q + 1)d1/ν < 2.
Let m be the minimal positive integer for which there exists an integer f
such that f < md2/ν < md1/ν < f + 1 and (m + 1)d2/ν and (m + 1)d1/ν
do not belong to the same open interval (g, g + 1) for all integer g ≥ 0.
Since f < (m + 1)d2/ν < (m + 1)d1/ν = md1/ν + d1/ν < f + 2 and the
assumption on m, we have that f +1 = (m+1)d2/ν or f +1 = (m+1)d1/ν or
(m+ 1)d2/ν < f + 1 < (m+1)d1/ν. In any of these cases n0 = m+ 1 and only
c = f + 1 satisfies (15).

Assume now d1 > ν and d2/ν > q − 1, where q = 
d1/ν�. In the case that
d1/ν ≥ q > d2/ν > q − 1, we have that n0 = 1 and c = q is the unique
integer satisfying (15). The same occurs when d2/ν = q (so d1/ν > q = d2/ν).
For the other case q+1 > d1/ν > d2/ν > q, letm be the minimal positive integer
for which there exists an integer f such that f < md2/ν < md1/ν < f + 1
and (m + 1)d1/ν and (m + 1)d2/ν do not belong to the same open interval
(g, g + 1) for all integer g > 0. Then (m+ 1)d2/ν = md2/ν + d2/ν > f + q and
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(m+ 1)d1/ν < f + 1+ q + 1 and by the assumption on m, we have n0 = m+ 1
and c = f + q + 1 is the unique integer that satisfies (15). �

���	�
 4.2� Lemma 4.1 can be modified to compute μp(d1, d2) = n0(d1 − d2)
when gcd(d1, d2) > 1 and (d1 − d2) | (p − 1). If gcd(d1, d2) = g > 1, then we
need to apply Lemma 4.1 to the modular equation

d′1i+ d′2j ≡ 0 mod
p− 1

gcd(g, p− 1)
, where d1 = gd′1 and d2 = gd′2.

Now we state the main result of this section that follows immediately from
Lemma 4.1.

������� 4.3� With the same notation and assumptions as in Lemma 4.1, we
have :

(1) νθ(Sp(F )) ≥ n0(d1 − d2) and |VF | ≥ n0(d1 − d2) + 1.

(2) If d1 ≤ ν or if d1 > ν and d2/ν > 
d1/ν� − 1, then :
• νθ(Sp(F )) = n0(d1 − d2).
• F is not a permutation polynomial of Fp.

Now we apply Theorem 4.3 to families of polynomials.

��	��� 4.4� Various examples :

• Let F (X) = X49+bX15 be a polynomial over F919. In this case d1−d2 = 34
and ν = 27. Applying Theorem 4.3, equation (10) has a unique minimal
solution. Hence, νθ(S919(F )) = 34 and p > VF ≥ 35. Note that Theorem
1.7 in [4] does not give any information since 1122 = 34× 33 > 918.

• Let F (X) = Xp−2+bXp−3 be a polynomial over Fp. In this case d1−d2 = 1

and ν = p − 1. Theorem 4.3 implies that ν2(S(p − 2, p − 3)) = p−1
2 and

|VF | = p+1
2 . Using the Cauchy-Davenport Theorem, we obtain that any

α ∈ Fp can be written as follows: xp−2+yp−2+a(xp−3+yp−3) = α. We have
that the Waring number of F is 2 since F is not a permutation polynomial
of Fp ([22]).

• Let F (X) = Xp−3+bXp−4 be a polynomial over Fp. In this case d1−d2 = 1
and

n0 =

⎧⎨
⎩

p−1
3 p ≡ 1 mod 3 ,

p+1
3 p ≡ 2 mod 3 .

Theorem 4.3 implies that

ν2
(
S(p− 3, p− 4)

)
=

p− δ

3
and |VF | ≥

p+ 3− δ

3
, where δ ∈ {−1, 1}.
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The following corollary is an improvement to Corollary 2.5 of [4] whenever
(d1 − 1) divides (p− 1).

����	�� 4.5� Let F (X) = aXd1 + bX be a binomial over Fp, so d2 = 1,
where ab �= 0. Suppose d1 is an integer satisfying d1 > 2 and (d1 − 1) divides
(p− 1). Let ν = (p− 1)/(d1 − 1) = 
 ν

d1
�d1 + s1, 0 ≤ s1 < d1. Then

(1) νθ
(
Sp(F )

)
=
(

 ν
d1
�+ 1

)
(d1 − 1), whenever d1 <

√
2(p− 1).

(2) p > |VF | ≥
(

 ν
d1
�+ 1

)
(d1 − 1) + 1, whenever d1 <

√
2(p− 1).

(3) If F (X) permutes Fp, then d1 ≥
√
2(p− 1).

P r o o f. The proof of Corollary 4.5 follows from Theorem 4.3 considering the
cases ν > d1 and ν ≤ d1. Note that the hypothesis d1 <

√
2(p− 1) of the

corollary implies that d1 < 2ν. �
���	�
 4.6� The modular equation associated to the polynomial F (X) =
aXd1 + bX defined in Corollary 4.5 has a unique minimal solution. This is not
true for d1 − 1 <

√
2(p− 1). Taking p = 67 and d1 = 12, we have that the

modular equation 12i+ j ≡ 0 mod 66 has two minimal solutions: (5, 6), (11, 0).

Note that 12− 1 = 11 <
√

2(p− 1) =
√
132 ≈ 11.49.

��	��� 4.7� Let F (X) = X15 + bX be a polynomial over F127. In this case√
2(126) ≈ 15.87. Corollary 4.5 implies νθ(S127(F )) = 14 and F is not a permu-

tation polynomial of F127.

��
������������ The authors thank the referee for careful reading the
paper as well as many helpful comments and corrections. Also, we are grateful
to the referee for providing a shorter and more elegant proof of Lemma 3.2 than
the original proof.
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