

DOI: 10.1515/udt-2017-0009 Unif. Distrib. Theory **12** (2017), no.1, 139-153

UNE PROPRIÉTÉ TOPOLOGIQUE DE CERTAINS ENSEMBLES DE MILLS

Bruno Deschamps

RÉSUMÉ. Dans cet article, nous montrons que l'ensemble des constantes de Mills, c'est-à-dire des constantes réelles M telles que, pour tout $n \geq 0$, l'entier $\left[M^{3^n}\right]$ soit un nombre premier, est la limite croissante d'ensembles homéomorphes à l'ensemble triadique de Cantor.

Plus généralement, pour une fonction φ et un ensemble A d'entiers donnés, nous étudions l'ensemble de Mills $\mathcal{M}_{\varphi}(A) = \{\alpha \in \mathbb{R} / \forall n \in \mathbb{N}, [\varphi_n(\alpha)] \in A\}$ (où $\varphi_n = \varphi \circ \cdots \circ \varphi$ n fois). Nous montrons que, sous certaines hypothèses sur φ et A, pour tout réel $w > \inf \mathcal{M}_{\varphi}(A)$, l'ensemble $\mathcal{M}_{\varphi}(A) \cap [2, w]$ est homéomorphe à l'ensemble triadique de Cantor.

ABSTRACT. In this article, we show that the set of Mills constants (real numbers M such that $[M^{3^n}]$ is prime for all $n \geq 0$) is the increasing limit of sets homeomorphic to the triadic Cantor's set.

More generally, for a given function φ and a set A of integers, we studying the Mills set $\mathcal{M}_{\varphi}(A) = \{\alpha \in \mathbb{R} / \forall n \in \mathbb{N}, \ [\varphi_n(\alpha)] \in A\}$ (where $\varphi_n = \varphi \circ \cdots \circ \varphi$ n times). We show that, under certain assumptions over φ and A, for all real $w > \inf \mathcal{M}_{\varphi}(A)$ the set $\mathcal{M}_{\varphi}(A) \cap [2, w]$ is homeomorphic to the triadic Cantor's set.

Communiqué par W. G. Nowak

Un célèbre théorème du à Mills (voir [M] affirme qu'il existe une constante réelle M>0 telle que, pour tout $n\geq 0$, l'entier $[M^{3^n}]$ soit un nombre premier (dans ce texte [x] désigne la partie entière du réel x). Ce résultat, formellement intrigant, découle en fait d'une propriété sur la répartition des nombres premiers. L'exploitation de l'idée utilisée dans [M] permet de généraliser substantiellement ce résultat.

Théorème 1. On considère $\varphi: [2, +\infty[\longrightarrow \mathbb{R} \text{ une fonction continue, stricte-} ment croissante et qui vérifie que, pour tout réel <math>x \ge 0$, $\varphi(x) \ge x$.

2010 Mathematics Subject Classification: 11A41, 11B05, 11B34. Keywords: Nombres premiers, théorème de Mills, ensemble triadique de Cantor.

Si la fonction φ vérifie la propriété.

(R) pour tout $n \gg 0$, il existe un premier p tel que $\varphi(n) (i.e., <math>\liminf_n \left(\pi(\varphi(n+1)-2) - \pi(\varphi(n))\right) \neq 0$) alors il existe une constante réelle $M_{\varphi} > 0$ telle que, pour tout $n \geq 0$, l'entier $[\varphi_n(M_{\varphi})]$ est un nombre premier (où $\varphi_n = \varphi \circ \cdots \circ \varphi$ désigne l'itérée n-ième de φ avec elle-même.)

Preuve. La condition (R) permet de construire une suite strictement croissante de nombres premiers $(q_n)_n$ qui vérifie que, pour tout $n \geq 0$, $\varphi(q_n) < q_{n+1} < \varphi(q_n+1) - 1$. Pour $n \geq 0$, on pose alors

$$u_n = \varphi_n^{-1}(q_n),$$

$$v_n = \varphi_n^{-1}(q_n + 1),$$

où φ_n^{-1} désigne la fonction réciproque de φ_n (définie sur l'image de la fonction φ_n qui est un intervalle d'après les hypothèses). Par stricte croissance de la fonction φ_n^{-1} , on a immédiatement $u_n < v_n$ pour tout $n \ge 0$. Maintenant,

$$u_{n+1} = \varphi_{n+1}^{-1}(q_{n+1}) > \varphi_{n+1}^{-1}(\varphi(q_n)) = \varphi_n^{-1}(q_n) = u_n,$$

$$v_{n+1} = \varphi_{n+1}^{-1}(q_{n+1}+1) < \varphi_{n+1}^{-1}(\varphi(q_n+1)) = \varphi_n^{-1}(q_n+1) = v_n.$$

Les suites $(u_n)_n$ et $(v_n)_n$ sont donc respectivement strictement croissante et décroissante. On en déduit que la suite $(u_n)_n$ converge vers un réel M_{φ} qui vérifie que, pour tout $n \geq 0$, $u_n < M_{\varphi} < v_n$. On a alors, pour tout $n \geq 0$,

$$q_n = \varphi_n(u_n) < \varphi_n(M_{\varphi}) < \varphi_n(v_n) = q_n + 1$$

ce qui assure que $[\varphi_n(M_{\varphi})] = q_n$ est bien un nombre premier.

Formulé ainsi, on voit que le théorème original de Mills est l'application du précédent à la fonction $\varphi(x)=x^3$. Le fait que, pour ce choix de φ , la propriété (R) est bien vérifiée découle d'un théorème de Ingham (voir [I]) qui assure que $p_{n+1}-p_n=O(p_n^{5/8})$, comme nous le verrons plus loin.

Le théorème des nombres premiers, permet d'exhiber beaucoup de fonction φ qui satisfont la propriété (R). Par exemple, la fonction $\varphi(x)=2^x$ (le fait que φ satisfait la propriété (R) peut-être vu plus directement comme application du théorème de Bertrand-Tchebychev). Ainsi, il existe un réel $\alpha>0$ tel que tous les entiers $[\alpha],[2^\alpha],[2^{2^\alpha}],\cdots$ sont des nombres premiers.

Bien sûr, en terme de comportement asymptotique, plus la fonction φ a une croissance lente, plus il en est de même de la suite $([\varphi_n(M_\varphi)])_n$. Si l'on dispose de bonnes majorations de la suite $(p_{n+1}-p_n)_n$, on est en mesure d'exhiber des fonctions φ satisfaisant aux hyptohèses du théorème 1 et telles que les suites $([\varphi_n(M_\varphi)])_n$ aient une croissance bien plus modérée que celle de $([M^{3^n}])_n$. Une des conjectures les plus fortes sur le comportement de cette suite est celle de

Cramér (cf. [C]) qui prévoit que $p_{n+1} - p_n = O((\log p_n)^2)$, c'est-à-dire qu'il existe une constante réelle K > 0 telle que $p_{n+1} \le p_n + K(\log p_n)^2$ pour tout $n \ge 1$. Plaçons-nous sous cette conjecture et considérons la fonction $f(x) = x(\log x)^{\lambda}$ où $\lambda > 2$ désigne une constante réelle. Pour $x \gg 0$ fixé, si p_n désigne le plus grand nombre premier tel que $p_n \le f(x)$, on a

$$p_n \le f(x) < p_{n+1} \le p_n + K(\log p_n)^2 \le f(x) + K(\log f(x))^2$$
.

Un calcul élémentaire de développement asymptotique montre que

$$f(x+1) - f(x) = (\log x)^{\lambda} + o((\log x)^{\lambda}).$$

Par ailleurs, on a

$$\left(\log f(x)\right)^2 = (\log x)^2 + 2\lambda \log x \log \log x + \lambda^2 (\log \log x)^2 = (\log x)^2 + o\left((\log x)^2\right).$$

On en déduit que pour $x \gg 0$, on a $f(x) + K (\log f(x))^2 < f(x+1) - 1$. Ainsi, si l'on considère alors la fonction continue et affine par morceaux φ qui vérifie $\varphi(n) = [f(n)]$ pour tout $n \geq 2$ entier et φ est affine sur tous les intervalles [n,n+1], alors φ satisfait aux conditions du théorème 1 et l'on voit que la suite $\left([\varphi_n(M_\varphi)] \right)_n$ a une croissance bien inférieure à $\left([M^{3^n}] \right)_n$.

Introduisons quelques définitions. On se donne une fonction φ comme dans l'énoncé du théorème (mais on ne suppose pas forcément que φ satisfait (R)). Pour une partie $A \subset \mathbb{N} - \{0,1\}$ donnée, on appelle constante de Mills relative à φ et A tout réel M > 0 tel que, pour tout $n \geq 0$, $[\varphi_n(M)] \in A$. On définit alors l'ensemble de Mills relatif à φ et A comme étant l'ensemble $\mathcal{M}_{\varphi}(A)$ constitué de toutes les constantes de Mills (relative à φ et A). On a ainsi

$$\mathcal{M}_{\varphi}(A) = \{ \alpha \in \mathbb{R} / \ \forall n \in \mathbb{N}, \ [\varphi_n(\alpha)] \in A \}.$$

On suppose désormais que φ vérifie $\varphi(\mathbb{N}) \subset \mathbb{N}$. Si l'on prend $\alpha \in \mathcal{M}_{\varphi}(A)$ et que, pour tout $n \geq 0$, on pose $p_n = [\varphi_n(\alpha)] \in A$ alors, puisque φ est croissante, on a $p_n \leq \varphi_n(\alpha) < p_n + 1 \Longrightarrow \varphi(p_n) \leq \varphi_{n+1}(\alpha) < \varphi(p_n + 1)$ et donc $\varphi(p_n) \leq p_{n+1} < \varphi(p_n + 1)$. Ainsi, avec cette hypothèse supplémentaire, il existe une application

$$\theta_{\varphi,A}: \mathcal{M}_{\varphi}(A) \longrightarrow \mathcal{E}_{\varphi}(A),$$
 $\alpha \longmapsto ([\varphi_n(\alpha)])_n,$

οù

$$\mathcal{E}_{\varphi}(A) = \left\{ (p_n)_n \in A^{\mathbb{N}} / \ \forall n \ge 0, \ \varphi(p_n) \le p_{n+1} < \varphi(p_n+1) \right\}.$$

Lemme 1. Si l'application φ vérifie qu'il existe $\lambda > 1$ tel que, pour tous $x, y \in [2, +\infty[$, on a $|\varphi(x) - \varphi(y)| \ge \lambda |x-y|$ (e.g., φ dérivable et $\inf_{t \in [2, +\infty[} \varphi^{'}(t) > 1)$ alors l'application $\theta_{\varphi, A}$ est injective.

Preuve. Soient $\alpha \neq \beta$ deux éléments de $\mathcal{M}_{\varphi}(A)$. Par récurrence immédiate, on a, pour tout $n \geq 0$, $|\varphi_n(\alpha) - \varphi_n(\beta)| \geq \lambda^n |\alpha - \beta|$. Pour un entier n_0 tel que $\lambda^{n_0} |\alpha - \beta| \geq 1$, on ne peut avoir $[\varphi_{n_0}(\alpha)] = [\varphi_n(\beta)]$, car dans ces conditions on aurait $|\varphi_n(\alpha) - \varphi_n(\beta)| < 1$. Ainsi, $\theta_{\varphi,A}(\alpha) \neq \theta_{\varphi,A}(\beta)$ et l'application $\theta_{\varphi,A}$ est donc bien injective.

On supposera désormais cette hypothèse satisfaite. En résumé, l'application

$$\varphi:[2,+\infty[\longrightarrow\mathbb{R}$$

vérifie les quatre propriétés suivantes:

- a) La fonction φ est strictement croissante et continue.
- b) Pour tout réel $x \geq 2$, $\varphi(x) \geq x$. (En particulier $\lim_{x \to +\infty} \varphi(x) = +\infty$ et donc φ est un homéomorphisme entre $[2, +\infty[$ et $[\varphi(2), +\infty[)$.
- c) Pour tout entier $n \geq 2$, $\varphi(n) \in \mathbb{N}$.
- d) Il existe un réel $\lambda > 1$ tel que, pour tous réels $x, y \geq 2$, $|\varphi(x) \varphi(y)| \geq \lambda |x y|$.

LEMME 2. Une suite $(p_n)_n \in \mathcal{E}_{\varphi}(A)$ n'est pas dans l'image de $\theta_{\varphi,A}$ si et seulement si $\forall n \gg 0$, $p_{n+1} + 1 = \varphi(p_n + 1)$.

En conséquence de quoi, l'application $\theta_{\varphi,A}$ est bijective si et seulement si l'ensemble A vérifie la condition (S) suivante

$$(S) \ \forall (p_n)_n \in \mathcal{E}_{\varphi}(A) \ \forall n_0 \ge 0 \ \exists n \ge n_0 \ p_{n+1} \ne \varphi(p_n+1) - 1.$$

Preuve. Reprenons la construction introduite dans la preuve du théorème pour tout entier n, posons

$$u_n = \varphi_n^{-1}(p_n),$$

$$v_n = \varphi_n^{-1}(p_n + 1).$$

Ces réels sont bien définis, à cause de la définition de $\mathcal{E}_{\varphi}(A)$. Par stricte croissance de la fonction φ_n^{-1} , on a immédiatement $u_n < v_n$ pour tout $n \ge 0$. Maintenant,

$$u_{n+1} = \varphi_{n+1}^{-1}(p_{n+1}) \ge \varphi_{n+1}^{-1}(\varphi(p_n)) = \varphi_n^{-1}(p_n) = u_n,$$

$$v_{n+1} = \varphi_{n+1}^{-1}(p_{n+1}+1) \le \varphi_{n+1}^{-1}(\varphi(p_n+1)) = \varphi_n^{-1}(p_n+1) = v_n.$$

Les suites $(u_n)_n$ et $(v_n)_n$ sont donc respectivement croissante et décroissante et elles convergent donc respectivement vers des réels u_∞ et v_∞ qui vérifient $u_\infty \leq v_\infty$.

Elles sont en fait adjacentes (i.e., $u_{\infty} = v_{\infty}$). En effet, si $\alpha \in]u_{\infty}, v_{\infty}[$, alors, pour tout $n \geq 0$, on a $u_n < \alpha < v_n$ et donc $p_n = \varphi_n(u_n) < \varphi_n(\alpha) < \varphi_n(v_n) = p_n + 1$. Ainsi, $[\varphi_n(\alpha)] = p_n$. Ceci prouve que tous les éléments de $]u_{\infty}, v_{\infty}[$ ont même image par $\theta_{\varphi,A}$, ce qui nie l'injectivité de cette application si $]u_{\infty}, v_{\infty}[\neq \emptyset]$.

Posons $\alpha = u_{\infty} = v_{\infty}$ et distinguons deux cas:

- 1) La suite $(v_n)_n$ est stationnaire. Cette hypothèse équivaut alors à la condition de l'énoncé : $\forall n \gg 0$, $p_{n+1}+1=\varphi(p_n+1)$. Si $\alpha' \in \mathbb{R}$ était tel que $(p_n)_n=\theta_{\varphi,A}(\alpha')$, alors pour tout $n\gg 0$, on aurait $u_n\leq \alpha' < v_n=\alpha$, ce qui rendrait impossible le fait que $\lim_n u_n=\alpha$. Le suite $(p_n)_n$ n'est donc pas dans l'image de $\theta_{\varphi,A}$.
- 2) La suite $(v_n)_n$ n'est pas stationnaire. Ceci implique que, pour tout $n \geq 0$, $u_n \leq \alpha < v_n$ et donc que $p_n \leq \varphi_n(\alpha) < p_n + 1$. Ainsi, $[\varphi_n(\alpha)] = p_n$ pour tout $n \geq 0$ et $(p_n)_n = \theta_{\varphi,A}(\alpha)$.

REMARQUES.

a) La condition (S) est satisfaite par la condition plus forte

$$(S^{'}) \exists a_0 \ge 0, \ \forall a \in A, \ a \ge a_0 \Longrightarrow \varphi(a+1) - 1 \notin A.$$

- b) L'ensemble $\mathcal{E}_{\varphi}(A) \theta(\mathcal{M}_{\varphi}(A))$ est au plus dénombrable. En effet, d'après ce qui précède, cet ensemble peut être vu comme un sous-ensemble du produit cartésien $\mathcal{F} \times \mathcal{R}$ où \mathcal{F} désigne l'ensemble des suites finies d'entiers et \mathcal{R} l'ensemble des suites récurrentes $(\lambda_n)_n$ vérifiant $\lambda_0 \in \mathbb{N}$ et pour tout $n \geq 0$, $\lambda_{n+1} = \varphi(\lambda_n + 1) 1$. Ces deux ensembles sont visiblement dénombrables.
- c) En application du lemme 2 on voit, par exemple, que si

$$A = \{2, \varphi(3) - 1, \varphi_2(3) - 1, \cdots\}$$

alors $\mathcal{M}_{\varphi}(A) = \emptyset$. De même, si l'on considère la partie

$$A = \{2, \varphi(2), \varphi_2(2), \varphi_3(2), \cdots \}$$

on voit que $\mathcal{M}_{\varphi}(A) = A$ est une partie discrête de \mathbb{R} et donc fermée.

Cette propriété est en fait très générale:

Lemme 3. Si l'ensemble A vérifie la condition (S) alors l'ensemble $\mathcal{M}_{\varphi}(A)$ est une partie fermée de \mathbb{R} .

Preuve. Soit $(\alpha_k)_k$ une suite d'éléments de $\mathcal{M}_{\varphi}(A)$ convergeant vers un réel α . Fixons un entier n. Par continuité, on a $\lim_k \varphi_n(\alpha_k) = \varphi_n(\alpha)$ si bien qu'il existe un indice k_0 tel que pour tout $k \geq k_0$, on a $|\varphi_n(\alpha_k) - \varphi_n(\alpha)| < 1$ et, par suite, on a $[\varphi_n(\alpha_k)] \in \{ [\varphi_n(\alpha)], [\varphi_n(\alpha)] + 1, [\varphi_n(\alpha)] - 1 \}$.

Le dernier ensemble considéré comptant un nombre fini d'éléments, il existe donc une sous-suite $(\alpha_{\sigma(k)})_k$ telle que la suite $([\varphi_n(\alpha_{\sigma(k)})])_k$ soit constante (égale à un certain $p_n \in A$). Puisque pour tout $k \geq 0$, $p_n \leq \varphi_n(\alpha_{\sigma(k)}) < p_n + 1$, par passage

à la limite sur k, on a donc soit $[\varphi_n(\alpha)] = p_n \in A$, soit $\varphi_n(\alpha) = [\varphi_n(\alpha)] = p_n + 1$.

Montrons que ce dernier cas est exclu : si $\varphi_n(\alpha) = p_n + 1$, alors, on peut choisir la sous-suite $(\alpha_{\sigma(k)})_k$ de manière à ce qu'elle soit croissante. Elle ne peut bien sur pas être constante, car alors on aurait $[\varphi_n(\alpha)] = p_n$. En appliquant le même raisonnement que précédemment au rang n+1, on voit qu'il existe une sous-suite $(\alpha_{\psi(k)})_k$ de la suite $(\alpha_{\sigma(k)})_k$ telle que pour tout $k \geq 0$, $p_{n+1} \leq \varphi_{n+1}(\alpha_{\psi(k)}) < p_{n+1}+1$ pour un certain entier $p_{n+1} \in A$. La suite $(\alpha_{\psi(k)})_k$ est croissante et non constante et comme $\varphi_{n+1}(\alpha)$ est entier, on en déduit que $\varphi_{n+1}(\alpha) = p_{n+1} + 1$, c'est-à-dire $p_{n+1} = \varphi(p_n+1) - 1$. Par récurrence, on construit ainsi une suite $(p_n)_n \in \mathcal{E}_{\varphi}(A)$ qui empêche à l'ensemble A de satisfaire à la condition (S).

Ainsi, pour tout $n \geq 0$, $[\varphi_n(\alpha)] \in A$ et donc $\alpha \in \mathcal{M}_{\varphi}(A)$. L'ensemble $\mathcal{M}_{\varphi}(A)$ est bien fermé.

Le caractère injectif de l'application $\theta_{\varphi,A}$ montre que le cardinal de $\mathcal{M}_{\varphi}(A)$ est intimement lié au nombre d'éléments de A qui figurent dans les intervalles $[\varphi(a), \varphi(a+1)[$ quand a parcourt A. Par exemple, si A vérifie la condition

$$(T) \exists M > 0, \ \forall a \in A, \ a \ge M \Longrightarrow \sharp A \cap [\varphi(a), \varphi(a+1)] \ge 2$$

alors l'ensemble $\mathcal{E}_{\varphi}(A)$ est à la puissance du continu (ce qui est donc aussi le cas de $\mathcal{M}_{\varphi}(A)$, d'après ce qui précède).

Pour voir ce fait, considérons un élément $a \in A$ tel que $a \geq M$. Il existe alors deux éléments distincts $\omega(0), \omega(1) \in [\varphi(a), \varphi(a+1)[$. De même, il existe deux éléments distincts $\omega(0,0), \omega(0,1) \in [\varphi(\omega(0)), \varphi(\omega(0)+1)[$ et deux éléments distincts $\omega(1,0), \omega(1,1) \in [\varphi(\omega(1)), \varphi(\omega(1)+1)[$. Par récurrence, on construit donc une application

$$\omega:\bigsqcup_{n\geq 1}\{0,1\}^n\longrightarrow A$$

qui vérifie que, pour tout $n \ge 1$ et tout $(i_1, \dots, i_n) \in \{0, 1\}^n$, on a

$$\omega(i_1,\cdots,i_n,0)\neq\omega(i_1,\cdots,i_n,1)$$
 et

$$\omega(i_1,\dots,i_n,0), \quad \omega(i_1,\dots,i_n,1) \in [\varphi(\omega(i_1,\dots,i_n)), \quad \varphi(\omega(i_1,\dots,i_n)+1)].$$

Il est clair que l'application ω est injective. Par passage à la limite, on en déduit que l'application

$$\Omega: \{0,1\}^{\mathbb{N}^*} \longrightarrow \mathcal{E}_{\varphi}(A),$$

$$(i_n)_n \longmapsto (a, \omega(i_1), \omega(i_1, i_2), \omega(i_1, i_2, i_3), \cdots)$$

est elle-même injective, ce qui prouve que le cardinal de $\mathcal{E}_{\varphi}(A)$ est 2^{\aleph_0} .

Dans cette situation, on a une intéressante conséquence topologique.

Lemme 4. Si l'ensemble A vérifie la condition (T) alors l'ensemble $\mathcal{M}_{\varphi}(A)$ est sans point isolé.

Preuve. Considérons un élément $\alpha \in \mathcal{M}_{\varphi}(A)$ et un réel $\varepsilon > 0$. Notons $(p_n)_n = \theta_{\varphi,A}(\alpha)$ et considérons un indice n_0 tel que $p_{n_0} \geq M$ (le M de la condition (T)) et $1/\lambda^{n_0} < \varepsilon$ (le λ de la condition d) satisfaite par φ). Pour $n \leq n_0$ posons $q_n = p_n$. Par (T), il existe $q_{n_0+1} \in [\varphi(p_{n_0}), \varphi(p_{n_0}+1)] \cap A$ tel que $q_{n_0+1} \neq p_{n_0+1}$.

Toujours par (T), on voit que pour tout $n \geq n_0 + 2$ on peut choisir $q_n \in A$ de sorte que la suite $(q_n)_n$ soit élément de $\mathcal{E}_{\varphi}(A)$ et qu'elle vérifie que pour tout $n \geq n_0 + 2$ on ait $q_{n+1} \neq \varphi(p_n + 1) - 1$. On peut donc considèrer l'élément $\beta = \theta_{\varphi,A}^{-1}((q_n)_n)$ qui vérifie, par construction, que $\alpha \neq \beta$.

Puisque $[\varphi_{n_0}(\alpha)] = p_{n_0} = q_{n_0} = [\varphi_{n_0}(\beta)]$, on en déduit que $|\varphi_{n_0}(\alpha) - \varphi_{n_0}(\beta)| < 1$. Mais comme, $|\varphi_{n_0}(\alpha) - \varphi_{n_0}(\beta)| \geq \lambda^{n_0} |\alpha - \beta|$, on en déduit finalement que $|\alpha - \beta| < \varepsilon$. Le point α n'est donc pas un point isolé de l'ensemble $\mathcal{M}_{\varphi}(A)$.

On va maintenant s'intéresser à trouver une condition suffisante simple pour que $\mathcal{M}_{\varphi}(A)$ soit un espace topologique totalement discontinu. Commençons par remarquer que dans \mathbb{R} , puisque les parties connexes sont les intervalles, une partie est totalement discontinue si et seulement si elle est d'intérieur vide. Ainsi, on a

$$\mathcal{M}_{\varphi}(A) \text{ n'est pas totalement discontinu}$$

$$\iff \mathcal{M}_{\varphi}^{\circ}(A) \neq \emptyset$$

$$\iff \exists \alpha < \beta, \]\alpha, \beta[\subset \mathcal{M}_{\varphi}(A)$$

$$\iff \exists \alpha < \beta, \ \forall n \geq 0, \ \big\{ \{\varphi_n(\alpha), \varphi_n(\beta)\} \big\} \subset A$$

où, pour x < y, $\{\{x,y\}\} = \{[t]/t \in]x,y[\}$. On voit donc qu'il est très facile de construire des parties A telles que $\mathcal{M}_{\varphi}(A)$ ne soit pas totalement discontinu, par exemple la partie

 $A = \bigcup_{n \ge 0} \{ \{ \varphi_n(\alpha), \varphi_n(\beta) \} \}.$

Les intervalles $[\varphi_n(\alpha), \varphi_n(\beta)]$ ont une longueur qui croît au moins aussi vite que $|\alpha - \beta|\lambda^n$, de sorte que, pour que $\mathcal{M}_{\varphi}(A)$ ne soit pas totalement discontinu, il faut que A contienne des intervalles d'entiers de longueur arbitrairement grande. On obtient ainsi:

Lemme 5. Si les intervalles d'entiers inclus dans A sont de longueurs bornées, c'est-à-dire si A vérifie la condition

$$(U) \ \exists k \geq 0, \ \forall n \geq 0, \ \left[[n,n+k] \right] \not\subset A$$

alors l'ensemble $\mathcal{M}_{\varphi}(A)$ est une partie totalement discontinue de \mathbb{R} .

Remarques. A la différence des conditions (T) et (S), la condition (U) est indépendante du choix de la fonction φ .

Théorème 2. Si l'ensemble A satisfait aux conditions (S), (T) et (U) alors l'ensemble de Mills $\mathcal{M}_{\varphi}(A)$ est non vide et est la limite croissante d'ensembles homéomorphes à l'ensemble triadique de Cantor.

Plus précisément, pour tout réel $w > \inf \mathcal{M}_{\varphi}(A)$, la partie $\mathcal{M}_{\varphi}(A) \cap [2, w]$ est homéomorphe à l'ensemble triadique de Cantor.

Preuve. Ce théorème est la conséquence du résultat bien connu qui affirme qu'un espace topologique est homéomorphe à l'ensemble triadique de C ant or si et seulement si c'est un espace métrique compact, totalement discontinu et sans point isolé.

COROLLAIRE 1. Soit $h \geq 3$ un entier. L'ensemble

$$\mathcal{M} = \left\{ \alpha \in \mathbb{R} / \ \forall n \ge 0, \ \left[\alpha^{h^n} \right] \text{ est un nombre premier} \right\}$$

vérifie que pour tout $w > \inf \mathcal{M}$, la partie $\mathcal{M} \cap [2, w]$ est homéomorphe à l'ensemble triadique de Cantor.

Preuve. On choisit ici $\varphi(x)=x^h$ et $A=\mathcal{P}$. La fonction φ satisfait bien aux conditions a,b,c) et à la condition d) pour le choix de $\lambda=h2^{h-1}$.

- L'ensemble \mathcal{P} vérifie la condition (S) car il satisfait en fait à la condition (S'), puisque pour tout a entier, a divise $(a+1)^h 1$.
- Pour montrer que l'ensemble \mathcal{P} vérifie la condition (T) reprenons le résultat de I n g h a m qui assure que $p_{n+1}-p_n=O\left(p_n^{\frac{5}{8}}\right)$. On a aussi $p_{n+2}-p_n=O\left(p_n^{\frac{5}{8}}\right)$ et l'on peut donc trouver une constante K>0 telle que $p_{n+2}-p_n\leq Kp_n^{\frac{5}{8}}$ pour tout entier $n\geq 1$. Considérons alors le réel $M=K^{\frac{8}{3h-8}}$ et prenons un entier $a\geq M$. On note p_n le plus grand premier inférieur à a^h . On a alors

$$p_n \le a^h < p_{n+1} < p_{n+2} \le p_n + Kp_n^{\frac{5}{8}} \le a^h + Ka^{\frac{5h}{8}}$$
$$< a^h + a^{\frac{3h-8}{8} + \frac{5h}{8}} = a^h + a^{h-1} < (a+1)^h$$

ce qui assure finalement que $p_n, p_{n+1} \in [a^h, (a+1)^h]$. Notons que pour h=2 la preuve ne marche pas. Le fait que \mathcal{P} vérifie la condition (T) quand h=2 est en fait toujours un problème ouvert (voir conjecture de Legendre).

• La longueur maximale des intervalles d'entiers inclus dans \mathcal{P} est 2, ainsi \mathcal{P} satisfait bien la condition (U).

Corollaire 2. Soit $N \geq 2$ un entier. L'ensemble

$$\mathcal{M} = \left\{ \alpha \in \mathbb{R}/[\alpha], [N^{\alpha}], [N^{N^{\alpha}}], \cdots \text{ sont tous des nombres premiers} \right\}$$

vérifie que pour tout $w > \inf \mathcal{M}$, la partie $\mathcal{M} \cap [2, w]$ est homéomorphe à l'ensemble triadique de Cantor.

Preuve. On choisit ici $\varphi(x) = N^x$ et $A = \mathcal{P}$. La fonction φ satisfait bien aux conditions a,b,c) et à la condition d) pour le choix de $\lambda = N^2 \log N$.

- L'ensemble \mathcal{P} vérifie bien la condition (S) car il satisfait en fait à la condition (S'): si $a \gg 0$ est premier, alors a+1 ne l'est pas et donc $N^{a+1}-1$ non plus.
- Pour montrer que \mathcal{P} vérifie la condition (T), le raffinement du théorème de Bertrand-Tchébychev suivant est suffisant : pour $n \geq 6$ il existe au moins deux nombres premiers entre n et 2n. On prend alors $a \geq 3$, et l'on a $N^a < 2N^a \leq N^{a+1}$ et donc $\sharp \mathcal{P} \cap [N^a, N^{a+1}] \geq 2$.
- L'ensemble \mathcal{P} vérifie la condition (U), comme vu précedemment.

EXEMPLE (Un exemple sans les nombres premiers). On considère deux entiers $a, b \ge 2$ tels que b > a et $a \mid /(b-1)$. L'ensemble

$$\mathcal{M} = \{ x \ge a / \ \forall n \ge 0, \ a \ \text{divise} \ [b^n x] \}$$

vérifie que pour tout w > a, la partie $\mathcal{M} \cap [a, w]$ est homéomorphe à l'ensemble triadique de Cantor. Pour voir ceci, on choisit $\varphi(x) = bx$ et $A = a\mathbb{N} - \{0\}$.

- A vérifie la condition (S') car si $n \in A$, alors $\varphi(n+1)-1 = bn+(b-1) \notin A$ puisque $a \mid (b-1)$.
- A vérifie la condition (T) car si $n \in A$, alors $\{bn, bn + a\} \subset A \cap [bn, bn + b[$ puisque a < b.
- A vérifie visiblement la condition (U).

En dépit des résultats topologiques établis sur l'ensemble de Mills, il n'est pas facile de prévoir la mesure de $\mathcal{M}_{\varphi}(A)$. En effet, il existe des parties de \mathbb{R} homéomorphes à l'ensemble triadique de Cantor qui ne sont pas de mesure nulle, par exemple les ensembles de Smith-Volterra-Cantor (voir [P]). Nous allons finir ce texte en montrant que $\mathcal{M}_{\varphi}(\mathcal{P})$ est bien de mesure nulle lorsque $\varphi(x) = N^x$.

PROPOSITION 1. On considère la fonction $\varphi(x) = N^x$ où $N \geq 2$ est un entier. Si l'ensemble A vérifie la condition

$$(V)$$
 Il existe un entier $n_0 \ge 0$ tel que la série $\sum_{a \in A} \frac{1}{a \log_N a \cdots \log_N^{[n_0]} a}$ converge

alors l'ensemble $\mathcal{M}_{\varphi}(A)$ est de mesure de Lebesgue nulle.

Preuve. On a $\varphi^{-1}(x) = \log_N x$ et si $n \ge 0$, on notera $\varphi_n^{-1}(x) = \log_N^{[n]} x = \log_N \circ \cdots \circ \log_N(x)$. Pour tout $n \ge 0$ et tout $w \notin A$ entier, on considère l'ensemble

$$\mathcal{M}_n = \{ \alpha \in [2, w] / \ \forall k = 0, \cdots, n, \ [\varphi_k(\alpha)] \in A \}.$$

La suite d'ensembles $(\mathcal{M}_n)_n$ est visiblement décroissante et comme $\mathcal{M}_{\varphi}(A) \cap [2, w] = \bigcap_n \mathcal{M}_n$, on voit que $\mu(\mathcal{M}_{\varphi}(A) \cap [2, w]) = \lim_n \mu(\mathcal{M}_n)$.

Pour $n \geq 1$, on considère l'ensemble $\mathcal{E}_n = \bigcup_{p \in X_n} [p, p + 1]$ où

$$X_n = \left\{ p \in A / \exists p_0, \dots, p_n \in A, \middle| \begin{array}{l} a) \ p_0 \in [1, w], \\ b) \ \forall k \le n - 1, \ N^{p_k} \le p_{k+1} < N^{p_k + 1}, \\ c) \ p = p_n \end{array} \right\}.$$

Pour $\alpha \in \mathcal{M}_n$ et $k = 0, \dots, n$, on pose $p_k = [\varphi_k(\alpha)] \in A$. On a $p_0 = [\alpha] \in [0, w]$ et, pour tout $k = 0, \dots, n$, on a $p_k \le \varphi_k(\alpha) < p_k + 1$. On en déduit que $\varphi_n(\alpha) \in [p_n, p_n + 1[$ et, pour tout $k = 0, \dots, n - 1, N^{p_k} \le N^{\varphi_k(x)} = \varphi_{k+1}(x) < N^{p_k+1}$ et donc $N^{p_k} < p_{k+1} = [\varphi_{k+1}(x)] < N^{p_k+1}$. Ainsi, $\varphi_n(\alpha) \in \mathcal{E}_n$.

Réciproquement, considérons un réel α tel que $\varphi_n(\alpha) \in \mathcal{E}_n$. Il existe donc une suite $p_0, \dots, p_n \in A$ telle que $p_0 \in [1, w], \ \forall k = 0, \dots, n-1, \ N^{p_k} < p_{k+1} < N^{p_k+1}$ et $\varphi_n(\alpha) \in [p_n, p_n+1[$. On a $[\varphi_n(\alpha)] = p_n \in A$ et comme $p_n \leq \varphi_n(\alpha) < p_n+1$ on a $\log_N p_n \leq u_{n-1}(x) < \log_N (p_n+1)$. Puisqu'il n'y a pas d'entier entre $\log_N p_n$ et $\log_N (p_n+1)$, on en déduit que $p_{n-1} = [u_{n-1}(\alpha)] = [\log_N p_n]$. Par récurrence on montre de la même façon que $p_k = [\varphi_k(\alpha)]$ pour tout $k = 0, \dots, n$. Puisque $w \notin A$, on a $\alpha < p_0 + 1 \leq w$ et donc $\alpha \in [1, w]$. Ainsi, $\alpha \in \mathcal{M}_n$.

On vient donc de montrer que $\alpha \in \mathcal{M}_n \iff \varphi_n(\alpha) \in \mathcal{E}_n$, et l'on en déduit que

$$\mu(\mathcal{M}_n) = \sum_{1 \le p_0 \le w} \sum_{N^{p_0} < p_1 < N^{p_0+1}} \cdots$$

$$\cdots \sum_{N^{p_{n-1}} < p_n < N^{p_{n-1}+1}} \left(\log_N^{[n]}(p_n+1) - \log_N^{[n]}(p_n) \right)$$

$$= \sum_{p \in X_n} \left(\log_N^{[n]}(p+1) - \log_N^{[n]}(p) \right).$$

Puisque $X_n \subset [\varphi_n(1), \varphi_n(w)]$, on a donc

$$\mu(\mathcal{M}_n) \le \sum_{p \in [\varphi_n(1), \varphi_n(w)] \cap A} \left(\log_N^{[n]}(p+1) - \log_N^{[n]}(p) \right).$$

Pour $n \geq 2$ et $x \in [\varphi_n(1), \varphi_n(w)]$, on a

$$(\log_N^{[n]})'(x) = \frac{1}{(\log N)^n x \log_N(x) \cdots \log_N^{[n-1]}(x)}$$

et le théorème des accroissements finis montre alors que

$$\mu(\mathcal{M}_n) \leq \sum_{p \in [\varphi_n(1), \varphi_n(w)] \cap A} \left(\log_N^{[n]}(p+1) - \log_N^{[n]}(p) \right)$$
$$\leq \frac{1}{(\log(N))^n} \sum_{p \in [\varphi_n(1), \varphi_n(w)] \cap A} \frac{1}{p \log_N(p) \cdots \log_N^{[n-1]}(p)}.$$

Ainsi, pour $n \ge n_0 + 1$, on a

$$\mu(\mathcal{M}_n) \le \frac{1}{(\log N)^n} \sum_{p \in A, \ p > \varphi_n(1)} \frac{1}{p \log_N(p) \cdots \log_N^{[n_0]}(p)} \xrightarrow{n \to +\infty} 0$$

ce qui achève la preuve de la proposition.

L'ensemble $A=\mathcal{P}$ des nombres premiers vérifie bien la condition (V), puisque si l'on note $(p_n)_n$ la suite des nombres premiers, alors le théorème des nombres premiers assure que $p_n \simeq n \log n$ et l'on a donc l'équivalent

$$p_n \log p_n \simeq n(\log n)^2$$
.

La série $\sum_{p\in\mathcal{P}}\frac{1}{p\log p}$ est donc convergente par application du critère sur les séries de Bertrand

Connaître la mesure de $\mathcal{M}_{\varphi}(\mathcal{P})$ est une chose, évaluer son entropie en est une autre, bien plus délicate. Nous proposons cette question à la sagacité du lecteur!

Nous avons fait figurer ci-après une petite annexe sur une autre question relative aux nombres premiers et à l'entropie. Bien que les considérations qui y sont développées sont dans le même thème que ce dont nous venons de parler, il n'y a pas de lien direct. Il nous a néanmoins semblé intéressant de faire figurer quelques part ces résultats.

Annexe : sur l'entropie de la suite des inverses des nombres premiers.

Si A désigne une partie du segment [0,1], alors pour tout $\varepsilon>0,$ on considère l'entier

$$N(\varepsilon) = \sharp \{k = 0, \cdots, [1/\varepsilon]/A \cap [k\varepsilon, (k+1)\varepsilon] \neq \emptyset\}$$

égal au nombre de "cases" du réseau de longueur ε qui rencontrent la partie A. On définit alors l'entropie de la partie A comme étant le réel

$$\operatorname{ent}(A) = \limsup_{\varepsilon \to 0} \frac{\log N(\varepsilon)}{\log 1/\varepsilon} \in [0, 1].$$

On considère une suite numérique $(u_n)_n$ strictement décroissante vers 0 et vérifiant $u_0=1$, et l'on considère la partie $A=\{u_n/\ n\in\mathbb{N}\}$. Pour $n\geq 0$, on pose $\varphi_n=u_n-u_{n+1}$, de sorte que la série $\sum \varphi_n$ est convergente vers 1. On voit alors que

$$N(\varepsilon) = [1/\varepsilon] - \sum_{n/\varphi_n > \varepsilon} ([u_n/\varepsilon] - [u_{n+1}/\varepsilon] - 1).$$

Ainsi, si l'on considère la suite $u_n = 1/n$ alors on a $\varphi_n = \frac{1}{n} - \frac{1}{(n+1)} = \frac{1}{n(n+1)}$. Si pour $\varepsilon > 0$ fixé on note

$$n_0(\varepsilon) = \left[\frac{1}{2\sqrt{\varepsilon}}\left(-\sqrt{\varepsilon} + \sqrt{\varepsilon + 4}\right)\right],$$

on a alors

$$N(\varepsilon) = [1/\varepsilon] - \sum_{n=0}^{n_0(\varepsilon)} \left([u_n/\varepsilon] - [u_{n+1}/\varepsilon] - 1 \right) = [u_{n_0(\varepsilon)}/\varepsilon] - n_0(\varepsilon) \simeq_{\varepsilon \to 0} \frac{K}{\sqrt{\varepsilon}}$$

et l'on en déduit que ent(A) = 1/2.

On s'intéresse dans cette annexe, à l'entropie de la suite $u_n=1/p_n$ où $p_0=1$ et $(p_n)_{n\geq 1}$ désigne la suite strictement croissante des nombres premiers. Cette question est reliée au fait que le calcul de l'entropie est dépend intimement lié des variations de la fontion $\varphi_n=1/p_n-1/p_{n+1}$ et donc des variations de $p_{n+1}-p_n$, fonction pour le comportement de laquelle il existe bon nombre de conjectures. Rappelons, par exemple, que l'hypothèse de R i e m a n n implique que $p_{n+1}-p_n=O(\sqrt{p_n}\log p_n)$ (ce dernier résultat étant toujours une conjecture).

Cette implication a été démontrée par H. Cramér, qui conjectura par la suite quelque chose de beaucoup plus fort : $p_{n+1} - p_n = O(\log^2 p_n)$. Chacune de ces conjectures n'a pas la même conséquence entropique pour la suite $(1/p_n)_n$ comme nous allons le voir.

Un petit calcul machine montre, pour les premières valeurs de la suite $(p_n)_n$, que la fonction $\frac{\log N(\varepsilon)}{\log 1/\varepsilon}$ semble tendre vers 1/2, c'est-à-dire que l'ensemble des inverses des nombres premiers serait d'entropie maximale (ce que prévoit bien la conjecture de C r a m é r).

Le résultat général suivant montre que cette propriété entropique reste vraie sous une conjecture beaucoup plus faible:

PROPOSITION 2. Pour tout $n \ge 0$, on considère $u_n = 1/p_n$ où $p_0 = 1$ et $(p_n)_{n \ge 1}$ désigne une suite strictement croissante d'entiers. On considère alors l'ensemble $A = \{u_n / n \in \mathbb{N}\}.$

Si l'on a
$$(p_{n+1} - p_n) = p_n^{o(1)}$$
 alors ent $(A) = 1/2$.

Preuve. Puisque la suite $(u_n)_n$ est une sous-suite de la suite $(1/n)_n$, on a immédiatement ent $(A) \leq 1/2$. Supposons maintenant que $p_{n+1} - p_n = p_n^{o(1)}$, on a alors $p_n \simeq p_{n+1}$ et donc

$$\varphi_n = \frac{p_{n+1} - p_n}{p_n p_{n+1}} = p_n^{-2 + o(1)}.$$

Notons $\omega(n)$ le o(1) apparaissant dans cette inégalité. Pour $\varepsilon > 0$ fixé, on considère le plus grand entier $n_0(\varepsilon)$ tel que

$$\varepsilon < p_{n_0(\varepsilon)-1}^{-2+\omega(n_0(\varepsilon)-1)}$$
.

Cet entier existe bien puisque la suite $(p_n^{-2+\omega(n)})_n$ tend vers 0 et il est clair que $\lim_{\varepsilon\to 0} n_0(\varepsilon) = +\infty$. On choisit dans la suite un ε suffisamment petit pour que $-2 + \omega(n_0(\varepsilon) - 1) < 0$. On a alors, pour tout $n \ge n_0(\varepsilon)$, $\varphi_n \le \varepsilon$ et donc

$$N(\varepsilon) \geq [1/\varepsilon] - \sum_{n=0}^{n_0(\varepsilon)-1} \left([1/\varepsilon p_n] - [1/\varepsilon p_{n+1}] \right) = \left[\frac{1}{\varepsilon p_{n_0(\varepsilon)}} \right].$$

Puisque $p_{n-1} \simeq p_n$, il existe une constate c > 0 telle que $cp_n \leq p_{n-1}$ pour tout n, si bien que l'on a

$$\left(cp_{n_0(\varepsilon)}\right)^{-2+\omega(n_0(\varepsilon)-1)} \geq p_{n_0(\varepsilon)-1}^{-2+\omega(n_0(\varepsilon)-1)} > \varepsilon.$$

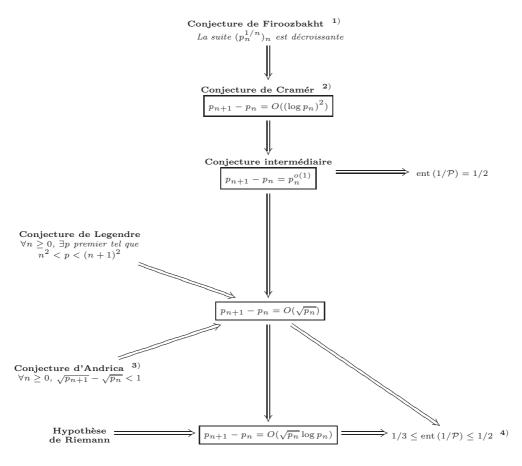
On en déduit que

$$\frac{1}{p_{n_0(\varepsilon)}} > c\varepsilon^{\frac{1}{2-\omega(n_0(\varepsilon)-1)}}.$$

Comme $\lim_{\varepsilon\to 0} n_0(\varepsilon) = +\infty$, en la variable ε , on a $\omega(n_0(\varepsilon) - 1) = o(1)$. Ainsi,

$$N(\varepsilon) \ge \frac{1}{\varepsilon p_{n_0(\varepsilon)}} - 1 \ge c\varepsilon^{-1/2 + o(1)} - 1 = \varepsilon^{-1/2 + o(1)}.$$

ce qui prouve finalement que $\operatorname{ent}(A) \geq 1/2$.



- Figure 1.
- 1) Voir [R] p. 185.
- 2) Voir [C].
- 3) Voir [A].
- 4) L'implication $p_{n+1} p_n = O(\sqrt{p_n} \log p_n) \Longrightarrow \text{ent } (1/\mathcal{P}) \ge 1/3$ se démontre avec les même idées que celles de la preuve de la proposition 2 et sa démonstration est laissée en exercice.

Quelques conjectures et liens entropiques

On note $(p_n)_n$ la suite des nombres premiers et $1/\mathcal{P}$ l'ensemble des inverses des nombres premiers. Nous avons rappelé dans le schéma implicatif ci-dessus, quelques conjectures célèbres relatives à la répartition des nombres premiers et leurs conséquences sur la valeur de l'entropie de l'ensemble $1/\mathcal{P}$.

Pour souligner l'intérêt de la proposition 2, nous avons fait figurer dans le schéma la conjecture intermédiaire suivante : $p_{n+1} - p_n = p_n^{o(1)}$, conjecture moins ambitieuse qui implique que ent $(1/\mathcal{P}) = 1/2$.

BIBLIOGRAPHIE

- [A] ANDRICA, D.: On a conjecture in prime number theory, Studia Univ. Babes-Bolyai Math. 31 (1986), no. 4, 44–48.
- [C] CRAMÉR, H.: On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica 2 (1936), 23–46.
- INGHAM, A.: On the difference between consecutive primes, Quart. J. Math. Oxford 8 (1937), 255–266.
- [M] MILLS, W.: A prime-representing function, Bull. Amer. Math. Soc. (1947), 604.
- [P] POELSTRA, A.: Homeomorphims Between Cantor Sets, (2011), Preprint.
- [R] RIBENBOIM, P.: The Little Book of Bigger Primes, Second Edition. Springer-Verlag, Berlin, 2004.

Received March 23, 2016 Accepted August 2, 2016

Bruno Deschamps

Département de Mathématiques Université du Maine Avenue Olivier Messiaen F-72085 Le Mans cedex 9 FRANCE

 $Laboratoire\ de\ Math\'ematiques\ Nicolas\ Oresme$ $CNRS\ UMR\ 6139$

 $E ext{-}mail:$ Bruno.Deschamps@univ-lemans.fr