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STATISTICAL DISTRIBUTION OF ROOTS
OF A POLYNOMIAL MODULO PRIMES II

Y OSHIYUKI KITAOKA

ABSTRACT. Continuing the previous paper, we give several data on the distri-
bution of roots modulo primes of an irreducible polynomial, and based on them,
we propose problems on the distribution.

Communicated by Shigeki Akiyama

Throughout this paper, unless otherwise specified, a polynomial means a
monic irreducible one of degree > 1 with integer coefficients, and the letter p
denotes a prime number. For a polynomial f(x) = 2™ + a,_12" 1 + -+ + ag of
degree n and a prime number p, we say that f(z) is fully splitting modulo p if
there are integers ri,7a,...,r, satisfying f(z) = [[(z — r;) mod p. Throughout
this paper except the final Subsection B2l we assume inequalities

0<rm < <r, <p. (1)
We note that if p is sufficiently large, (Il is equivalent to
O<r <---<r, <p.
Putting
Spl(f, X) == {p < X | f(=) is fully splitting modulo p}

for a positive number X and Spl(f) := Spl(f,o0), we know that Spl(f) is an
infinite set and the density theorem due to Chebotarev

L ESPLX) 1
Xooo #{p< X} [Q(F): Q)
holds, where Q means the rational number field and Q(f) is a finite Galois

extension field of Q generated by all roots of f(z) ([3]). The author studied
statistical distribution of local roots r; for p € Spl(f) in previous papers, and
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YOSHIYUKI KITAOKA
proposed the following problem : For a real function ¢ = t(x1,...,2,), study a
density vector Pr(f, ¢, X):=[..., Fy, F1,...] defined by

_ #Hp e SO X) | [t /o, ra/p)] = )
#5pl(/, X) /

where [x] is an integer defined by z < [z] < z + 1.

Fk:

Here, we take up a function t;(z1,...,2,) = 2z; (1 < j < n) with the con-

dition & = 1. The condition [t;(r1/p,...,mn/p)] = 1 is obviously equivalent

to 0 <r; < p/2. Let us define the following frequency Prp(f, X) for a domain
D c0,1)",

Spl(f, X R D

PI'D(f,X) — #{pe p(f’ )‘(Tl/p7 T /p)e }

#Spl(f, X) ’ (2)
PI‘D(f) = hmx_mo PI‘D(f,X).

Although the existence of the limit is not proved, the author has no data to
deny if], and assume the existence hereafter.

In this paper, we are mainly concerned with making data on the special

domain
Dy = {(21,.. ) € [0,1]" | 25 < 1/2},

and we put
Pr*(f,X) := [Prp,(f, X),...,Prp, (f, X)],
PI'*(f) = )(IE)HOOPI'*(‘]C,X) = [PrDl(f)7' . '7Pan(f)]'

Based on data, we give questions in the last section.

1. Propositions

The followings are a few proved small results.
THEOREM 1. For a domain D C [0, 1]™, we put
DY :={(1-wp,...,1 —m1) | (21,...,2,) € D}.
Then we have

Prp(f(z)) = Prpv ((—1)"f(—x)).

IThe data were obtained using pari/gp. The PARI Group, PARI/GP version 2.8.0, Bordeaux,
2014, http://pari.math.u-bordeaux.fr/.
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Proof. It is obvious that Spl(f(z)) = Spl((—1)"f(—z)). Assume that f(z) =
[[(x = r;) mod p with the order (]) for a prime p € Spl(f); then we have
(=1D)"f(—z)=[[(x+r) =[[(x—R;)) mod pfor 0 < Ry :=p—rp, < --- < R, :=
p—ry < p for a sufficiently large prime p € Spl(f), hence (r1/p,...,r,/p) € D is
equivalent to (R1/p,...,R./p) = (1 —7r,/p,...,1 —1r1/p) € DV, which implies
the statement. (]

THEOREM 2. Let a domain D; be as before. We have, for 1 <j <n
Prp,((=1)"f(=2)) + Prp,,,_,(f(z)) = L.

If Prp, ((—1)"f(—=x)) = Prp, (f(z)) holds, then Prp,(f) + Prp,,, ,(f) =1.

Proof. Using notations r;, R; in the previous proof, we see easily that

# {p € Spl((-1)"f (=), X) | R; <p/2}
=#{p € Spl(f, X) [ rny1-; > p/2}
= #Spl(f, X) — #{p € Spl(f, X) [ rny1-; <p/2},
which implies Prp, ((—1)"f(-z)) =1 —Prp,.,_, (f(z)). O

The case of f(z) = g(h(z)) for a quadratic polynomial A is easy :

THEOREM 3. Let a polynomial f(z) = 2" + a, 12" > + --- + ag be of form
g(h(x)) for a quadratic polynomial h. Then the limit Prp, (f) exists and we have

[ j<n,
Per<f)_{o it j>n/2.

Proof. We note that n is an even integer. As is shown in the proof of Propo-
sition 2 of [I], we have 7; + r,41-; = p — 2a,—1/n under the assumption ()
if p is sufficiently large. Suppose j < n/2; then j < n+ 1 — j implies

2r; <rj+ragpi—j =p—2an_1/n.

Assume that there are infinitely many primes p such that 2r; > p; then for
such infinitely many primes p, we have 0 < 2r; — p < —2a,_1/n. Hence for an
integer R with 0 < R < —2a,,_1/n, there are infinitely many primes p such that
2r;—p = R.Put F(x) := 2" f(x/2), which is a monic irreducible polynomial with
integer coefficients. It is easy to see that F/(R) = F'(2r;) = 2" f(r;) = 0 mod p for
infinitely many primes, which implies a contradiction F'(R) = 0. Thus, 2r; < p
holds if p is sufficiently large, hence Prp, (f) = 1.

Next, suppose that there are infinitely many primes p satisfying r; < p/2
for j > n/2 + 1; then applying the above inequality to n + 1 — j (< n/2) in-
stead of j, we have 2r,11_; < p — 2an—1/n, hence —2a,_1/n > 2rp41-j — p.
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On the other hand, r,41-; = p — 2a,—1/n — r; implies 2r,11_; —p = p — 2r;
—4ap—1/n > —4a,_1/n. They imply that there is an integer R satisfying that
—2a,-1/n > R = 2ry41-j — p > —4a,_1/n for infinitely many primes p.
Similarly to the former, it implies a contradiction, which implies that the number
of primes p satisfying r; < p/2 is finite, i.e., Prp,(f) = 0. O

2. Numerical data

First, let us explain how to guess conjectural densities Prp, (f) from an ap-
proximation Prp, (f,10'). We adopt the following double checking method.
Let a« = a/b be a rational number and suppose that a sequence of rational
numbers ¢, tends to «. We note that both |c,b — r(¢,b)| and |c, — r(e,b)/b|
tend to 0 as n — oo, where r(x) is the nearest integer to x. For an approxi-
mate value ¢ = Prp, (f,10'%) to o, we take integers b; such that by (resp. bs)
gives the minimal value of |cb; — r(cby)| (vesp. |¢ — r(cbs)/bs|) to the extent of
1 <b; <1000. If by = by, we may suppose o = r(cby)/b1. In the following data,
Prp, ((=1)"f(—z)) = Prp,(f) seems to hold.

(1) The case of n = 3. For f3 := 2% + 2, a conjecture is

Prs := Pr*(f3) = [7/8,1/2,1/8] = [7,4,1]/8. (3)
The original data are
Pr*(fs,10%) = [66357392/75839979, 12639203 /25279993,
9478153 /75839979
and
Prs — Pr*(f3,10'%) = [3.4146, 3.1388,2.4319]/10°.

We checked the following : For any irreducible polynomial f(z) = 23 +
asx? + ayr + ag with |a;| < 5, there is a large number X such that, putting

Pry[j] = a/b((a,0) = 1),

r(mb - Prp, (f, X)) = ma with m = 10 (4)
for j = 1,...,n. The larger m is, the more precise the approximation is. The den-
sity Pr*(f) is independent of each polynomial f in the case of deg(f) = 3, which
implies ), Prp,(f) =n/2 = 3/2 by Theorem[2]
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Let us give remarks. Since 71 + 72 + r3 + as = Cp(f)p holds for an integer
Cy(f) = 1,2, the condition ry < r3 < pimplies ro < rg=C,(f)p—r1—ra—az < p.
It is not difficult to see that we have C,(f) = [r1/p + r2/p] and a stronger
inequality ro < Cp(f)p—r1—re < pif p is sufficiently large. Taking account of it
and neglecting a term ag by as/p — 0 (p — o0), we suppose that for z; := r; /p,
1+ 2 + x3 = k is an integer 1 or 2, and consider the region defined by

D ::kHz{(xl’x2) [0 <2y <o <w3:=k — (21 +22) < 1}

:{(.’Iil,.’ljz) | O<a <a9 < T3 = [xl + .’L'2‘| — (.’IJ1 + .’IJQ)}

Then the area of © is 1/6, and the area of the intersection of ® and z; < 1/2 is

1/6 times )
7/8,4/8,1/8 according to j = 1,2,3 (cf. [@)).

More generally, for a region D given by
{(1‘1,1‘2) | O0<x <x9 <3 := [Il + xﬂ — (Il +$2),Ai <uz; < B (vl)} ,

the area of D is likely to be 1/6 (=the area of ©) times the density of p sat-
isfying A; < r;/p < B; (i = 1,2,3). For example, for A; = Ay = A3 = 0,
Bl = 1/3,32 = 1,B3 = 1((1T€(I = 1/9), or Bl = 1/4,32 = 1/3,B3 = 1/2
(area = 1/288), numerical data match with it. These suggest that the sequence
of points (r1/p, r2/p) is uniformly distributed on ® in some sense (cf. ([@)).

Hereafter we omit the original data.
(2) The case of n = 4.
For fy :=a* + 23 + 22 + 2 + 1, a conjecture is
Pry :=Pr*(fy) = [11,9,3,1]/12. (5)
Pry — Pr*(f, 10'%) = [2.3298, —1.8589, 2.2668, 3.1439] /10°.

We checked the following : For any irreducible and indecomposabld] polynomial
f(x) = 2* +azx® + asw® + a1z + ag with |a;| < 5, there is a large number X such
that an equation similar to () for Pry instead of Prg holds for j =1,...,n.

(3) The case of n = 5.

For f5 := x® — 1023 + 522 + 10z + 1, which defines a subfield of degree 5 in
a cyclotomic field Q(exp(27i/25)), we conjecture

Prs := Pr*(fs) = [31, 26, 16,6, 1]/32. (6)
Prs — Pr(fs,1010) = [—~2.6026, —5.9824, —1.7630, —2.7167, —0.65312] /10°.

2A polynomial f(z) is called indecomposable unless f(z) is of the form g(h(z)) with
degh # 1,deg f.
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We checked the following : For any irreducible polynomial f(z) = 2° + asz* +
azx® + azx? + a1z + ag with |a;| < 3, there is a large number X such that
an equation similar to (@) holds for j = 1,...,n for Prs instead of Prs.

(4) The case of n = 6. Putting

for(z) =2 +a5+ 2t +a3+ 22+ +1 (Ex.1 in [1),
foon(z) == 25 — 22° + 112 + 62° + 1622 + 1222 + 127 (Ex.2 ibid.),
Jo.2:(x) := 2% — 223 4+ 922 + 62 + 2 (Ex.3 ibid.),
fo2p(z) == fo.2n(—2),

foa3(x) == 2% —92° — 32" +1392° + 932% — 6272 + 1289 (Ex.4 ibid.),

we conjecture

947,845, 650, 310, 115,13]/960 for f = fe.1,
Pro(f) =\ (63, 57, 42, 22,7, 1] /64 for f = fooe (c=n,2,p), (1)

[35,32,26,10,4,1]/36 for f = fe.3,
and

Pre(f) —Pr*(f,X) =
—0.33, —1.37, —0.54,1.03, —1.06, —0.29] /10¢ for f = fs.1, X = 103,

[

[1.71,2.38, —4.32, —8.71,1.78, 3.29] /10° for f = fe.om, X = 1010,
(0.81,0.13,3.73, —4.08, —6.66, —1.91]/10° for f = fe.0., X = 1010,
[—0.74,—0.83,0.02, 0.88,6.34,1.91] /10° for f = fe3, X = 10%0.

Although polynomials fs.1, f6.2n, f6.3 define the same field Q(exp(27ri/7)), that
is their Spl(f) are equal, the speed of convergence for fg 1 is slow compared to
other two polynomials. The author does not know the reason.

First, we define a type number 1,2,3 to a polynomial f with a root « as
follows :

The type number of f is 2 if Q(«) contains a quadratic subfield My such that
the trace of o to M> is rational.

The type number of f is 3 if Q(«) contains a cubic subfield M; such that the
discriminant D of the monic minimal quadratic polynomial gs(z) of o over M3
is rational.

Otherwise, the type number is 1.

There are linear (resp. quadratic) relations among local roots r; in () if the
type number is 2 (resp. 3), and for a polynomial f(z) = g(h(z)) with a cubic
polynomial h(x), the type number of f is 2 (cf. [1).

It is not difficult to see that type numbers 2 and 3 are incompatible.
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We checked the following : Let a polynomial BP be fs1 or fs2., and «
a root of it. We consider a polynomial f whose root is g := Z?:o c;a with
integers ¢; |¢;] < 1. We skip reducible polynomials and decomposable ones of
f(x) = g(h(x)) with degh = 2. There is a large number X for which @) is valid
with m = 1 instead of m = 10 for the density () corresponding to the type of f.

(5) The case of n = 7. We checked for any irreducible polynomial f(x) = 27 +
agx® + - - -+ ag with |a;| < 1 there is a large number X such that (@) with m =1
holds for Pr*(f) given by

[127,120,99, 64,29, 8,1]/128. (8)

3. Remarks
3.1.

First, put

D, = {(xl,...,xn)\0<x1<-~-<xn<1,2xi€Z},

=1

n—1 n—1
D, = {(xl,...,xn_l) |0< 2 <+  <Zpoy <@y = {Zx% —Z%}
i=1 i=1

n
= {(xl,...,xn_l)|0<x1<---<xn_1 <3xn<1,inEZ}.

i=1
D,, is a projection of ©,,, and the volume seems to be 1/n!. We note that points

(ri/p,...,rn—1/p) are in ®,, if p is sufficiently large, and let us consider the
following property, which is a kind of uniformity :

_ vol({x €D, |x€ D})
N vol(Dy,)
vol(D N DY) 9)

vol(®D,,)

for a domain D C [0,1)". Here, Prp(f) is defined at (), and we put, for
x=(z1,...,Tn-1),

n—1 n—1
= (z1,...,2p-1,2,) for x,:= E x| — E ;.
i=1 i=1

The first equality in ([@) is an expectation, but the second equality is definite,
since the angle of two hyperplanes 7T, defined by > x; = ¢ and H,, defined
by z, = 0 is arccos(1/y/n) independent of c. Theoretically the second is better,
but numerically the first is easier to calculate.

Prp(f)
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For a polynomial f = 2" + a,, 12" ' + ..., we put tr(f) := —a,_1, and we
note that the equation ry+---+r, —tr(f) = 0 mod p implies 71 /p+---+7r, /p =
tr(f)/p+Cy(f) for an integer C),(f). If Prp(f) # 0 holds, then there are infinitely
many primes p € Spl(f) such that (r1/p,...,r,/p) € D, whose accumulation
points are in ©,, by r1/p+- -+ /p = Cp(f)+tr(f)/p. Hence we have DD, #0
if Prp(f) # 0. In other words, D ND,, = § implies Prp(f) = 0, therefore @) is
valid if DND,, = 0. It is inappropriate to put the restriction D C 9,, from the
beginning, because it implies Prp(f) = 0 in the case of tr(f) # 0.

Suppose that deg f is odd prime: We expect

Pr*(f) = la(n,1),...,a(n,n)]/a(n,0),

a(n,m) := i <?) =n_2m (3) (0<m<n),

j=m J=0

where

and a(n,m) + a(n,n —m+ 1) = 2" = a(n,0) (1 < m < n) is easy to see (cf.
Theorem[2). Relevant values are

[8,7,4,1] (n=3),
16,15, 11,5, 1] (n=4),
[a(n,0),...,a(n,n)] = ¢ [32,31,26,16,6,1] (n=25),
[64,63,57,42,22,7, 1] (n = 6),
(128,127, 120,99, 64,29,8,1] (n = 7)

The values in the case of n = 3,5, 7 match with [3]), (@), ), however for n = 4,
it does not match with (), and for n = 6, it matches with fs 2., for which the
uniformity (@) fails as we will see later.

Let D; be as before. In case of n = 3, the equation (d) for D; is consistent

with Prs as noted, and by approximating the volume by the Monte Carlo method
in the case of n = 5,7, the equation () for D; seems to be true.
Moreover, in case of n = 5, for any subset S C {1,2,3,4,5} with 2 < #S < 4,
we gave conjectural densities Pry(f,S) after proposition4 in [I], which corre-
spond to the region defined by D,,(S, k) :={(x1,...,2,)€[0,1)"|[>,cqzi| =k}
They also support (), as far as we approximate the volume of the region by the
M. C. method.

In case of n = 4, after calculating volumes exactly, we can check that the
conjecture Pry is compatible with (@), and also conjectural densities Pry(f,.S)
after proposition4 in [I] corresponding to the region D, (S, k) match with ()
by approximating volumes by the M. C. method.
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In case of n =6 and f = fs.1, ([[) and Pri(f,S) in the third section of [I] are
consistent with (@) by approximating volumes by the M. C. method, but there
is no information on the values of the density in [2] unfortunately.

3.2.

Let a polynomial f(x) be of degree n and put K := Q(«), where « is a root of
f(x). Let us see that an existence of a proper subfield of K may imply relations
among local roots, which is a generalization of proposition 5 in [I] as follows.

Denote the ring of integers of K by Ok and prime ideals lying above p
by 9B;. Suppose that p € Spl(f) is sufficiently large and rq,...,7, are roots
of f(x) mod p, where we do not assume inequalities (II); then we have the prime
ideal decomposition of p : pOx = P - - - PR, and we may suppose that, by renum-
bering

‘131‘ = (a — Tz)OK —|—pOK and OK/pOK = OK/&pl b---D OK/mna (10)
in particular o« = r; mod ;. The isomorphism in (IQ) is given by

B mod pOg +— (8 mod Py, ..., 3 mod P,)

and

Ok /Bi = Z/pZ.

Let F be a proper subfield of K and m := [F': Q], k := n/m, and we renumber
roots r; and ideals B; as follows :

pOF = P Pm,
POk =Pi1... Pir (1 <i<m),
a =rijmodP;; (1<i<m,1<j<k).

Let g(x) be the monic minimal polynomial of o over F', whose degree is k; then
g(a) = 0 implies g(r;,;) = 0 mod P, ;, i.e., g(ri ;) € Pi; N F =p; (1 <j <k),
hence
g(x) = H (x —r;;)modp; (1<i<m).
1<j<k

If ¢tr(g) is a rational integer, then we have

k
tr(g)= Z”J mod p (1<i<m),
which implies j=1
k k
> rig/p=> r/pEL 2<i<m).
j=1 j=1
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hence, for a certain labeling of z1,...,2, as z; ; (1 <i <m,1 < j < k), a point
(r1i/p,...,mn/p) is on a lower dimensional set

k k
> i Yoy €2 o 25 i<y,
Jj=1 j=1

Hence the uniformity (@) breaks down (cf. Example 1 below).

TR

If g(x) is quadratic and the discriminant is a rational integer D, then we
have (r;1 — 7;2)?> = D mod p, which implies 7,1 — r;a = £(r11 — r1,2) mod p
(2 <i<m), hence

(rig/p—riz/p) £ (ri/p—riz/p) €Z (2<i<m).

Similarly to the above, a point (r1/p,...,7,/p) is on a lower dimensional set
defined by a linear form, and the uniformity (@) breaks down (cf. Example 2
below).

Suppose that there are subfields Fy, F5 of K such that Q C I} C Fy, C K
and ¢((z) is the minimal polynomial of a over F;. Then ¢! is divisible by ¢g(?
over Fy by ¢ (a) = ¢ (a) = 0, and put d; = deg ¢'”. Renumber roots r; and
prime ideals as

[F1:Q] [Fo:Fy]
(a

pOr, = H p(l) )O H pw’
dy

gV (z) = H(w — 1;,%) mod pgl) (1<i<[F1:Q)]),
k=1
da

9P @) = [[(@ = rinsg-na) modp (1< < [F: R)).
k=1

Suppose that tr(g?) € Fy and tr(g®) = m - tr(¢")) (m € Z) hold; then
tr(g?®) = 222:1 T ket (j—1)d, MOd pi?]) and the condition tr(¢g(®?) € Fy imply

tr(g®) =% T ket (j—1)dp O pgl). Now the condition tr(g®) = m - tr(g))
implies do

dy
tr(g(2)) = ZTz‘,k+(j—1)d2 = mZn’k mod pgl)

k=1 k=1

d d :
Therefore we have > 12 | 7 ki (j—1)dy — M Doy Tk = 0mod p, ie.,

d2 Cll
D TikrG-nya/p—m Y rin/p €L (1<i<[F:Q)),
k=1 k=1

118



STATISTICAL DISTRIBUTION OF ROOTS OF A POLYNOMIAL

Hence a point (r1/p,...,r,/p) is on a lower dimensional set
{x17~-~7 szk—l—(J 1)d *mzxzkez )}
for an appropriate labeling {z1,...,2z,} = {;; | ¢,j}. This case occurs for a

polynomial of degree 8.

For a polynomial f = 2% — 7227 4 18162° — 1958425 + 943202* — 599043
— 166422 — 691202 + 95488, put K = Q(«) for a root «, which is a Galois exten-
sion of Q. K contains three quadratic subfields Fy (= Q(v/=1)), F>(= Q(v/3)),
F3(2 Q(v/=3)) and five quartic subfields Fy(~ Q(v—1,V3)), Fs, Fs, Fr, Fy,
where Fs, Fs (resp. Fr, Fg) contain Q(v/3) (resp. Q(v/—3). Fields F5 = Fp
(resp. Fy = Fy) are defined by a polynomial 2* —223 —2z+1 (resp. 2* — 322 +3).
Let a polynomial g; be the minimal polynomial of « over F;, and let a; be the
complex roots of f with a3 = a and

91(z) = (z — a1)(z — a2)(z — a7)(z — as)
92(z) = (z — a1)(z — a2)(z — a3)(2 — o),
93(z) = (z — a1)(z — a2)(z — a5)(2 — as),
94(z) = (z — a1)(z — a2),
95(z) = (z — a1)(z — a3),
96(z) = (z — a1)(z — o),
97(z) = (z — a1)(z — as),
9s(z) = (z — a1)(z — as).

Then for any prime p € Spl(f), ¢i;(z) is congruent to a polynomial replaced a
complex root «; by a local root r; without (Il) modulo the prime ideal of F;
below a fixed prime ideal of K above p, and we have linear relations

2(—=ry+19) +r3—1rs —2(rs —1r6) — 0(r7 — rg) = 0 mod p,
—r1 +1ro+ 2(r3 —r4) + (r5 — 16) + 20(r7 — rg) = 0 mod p,

hence the uniformity (@) breaks down. The linear relations come from global
identities of roots of f:

2(—0[1 —|—Oé2) + a3 — oy — 2(0&5 — 046) +ar—ag =0,
—Qy + Qo +2<O¢3 —Oé4) + a5 — O —2(0&7 — Oég) =0.

In the above, § = £1 which depends on p. The sign +1 comes from the ambiguity
of the choice of r7, rg. It seems to be equi-distributed under the condition r7 < rg.

119



YOSHIYUKI KITAOKA

Quite similarly to proposition 4 in [I], we can show : If local roots r; without
restriction () for infinitely many primes p € Spl(f) satisfy h(r1,...,7,) = 0 mod
p for some polynomial with integer coefficients, there is a numbering aq, ..., an,
of complex roots of f satisfying h(aq,...,a,) =0.

For what kind of a region or a polynomial h above the uniformity (@) breaks
down ? One working hypothesis is that the above polynomial & is only a linear
form if the uniformity (@) breaks down. If there is a relation Y m;a; = m
(mi,m € Z), then accumulation points of (ri/p,...,r,/p) satisfies a relation
> miZe@y = 0 for a permutation o dependent on the ordering of r;. How can
one find out a deformation from the uniformity ?

ExAMPLE 1. Polynomials fg.2., fs.2n have the following decomposition over

Q(v/—1), Q(v/—T7), respectively.
fooe = (2% =3V=le — V=1 - 1)@’ + 3V =Tz + V=1~ 1),
foom = (@® =2+ (56— V=Tz+8-3V/=7)
x (2% — 2 + (5 +V=T)z + 8 + 3v/=7).
As a numerical example, Prp(fs.2.) takes a non-zero value 10/144 for a lower
dimensional set D := {(z1,...,26) € [0,1)° | 21+ 22 + 23 = 1,24 + 25 + 26 = 2}.

But, Prp(f) = 0 holds for f = fs.2n, f6.2p, and putting D,, = {(z1,...,x¢) €
[0,1)8 | |21 + 22 + 23 — 1| < w, |24 + 75 + 26 — 2| < W}, We have

0.1483 (w = 0.1),
Prp, (/.10 — 4 00764 (w = 0.01),
v 0.0703 (w = 0.001),
0.0698 (w = 0.0001)

These may suggest lim,, o Prp, (f) = 10/144 = 0.0694.

EXAMPLE 2. Let us consider a polynomial f = fs 3. It decomposes over a field
F := Q(pB) defined by 83 — 962 — 578 + 169 = 0 as follows:

fo.3 =(a® = Bz + B2/4+7/4)
x (2% + (—B%/6 +53/3 +17/6)z + $2/6 — 198/6 + 50/3)
x (z* + (/6 —2B/3 — 71/6)x — 53° /12 + 198/6 + 427/12).
The discriminant of each factor is —7.

EXAMPLE 3. We use notations g, p;, r; ; at the beginning of this subsection. Let
V(z1,...,2) be a polynomial over Z in xy,..., 2 which vanishes at a point
(gk—1,---»90), putting g(x) = 2* + gr_12*~1 + .- + go. Such a polynomial
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exists, since coefficients of g(x) are algebraic. Let v be a polynomial replacing
variables of V' by corresponding elementary symmetric functions in r; 1,...,7; x.
Then we have

U(T‘Ll,...,’f‘i,k)EpiﬂZ:pZ (lgvzgm)
Note that a relation v(r; 1,...,7; %) = 0 mod p does not necessarily imply rela-
tions among 7 1/p, . .., 7 k/p. But, it implies v(r1 1,...,71 1) = - = 0(rm1,. ..,
Tm,k) mod p and it may happen to reduce to linear relations. If all reduced lin-
ear relations have no constant term, then for some lower dimensional region D,
Prp(f) > 0 happens as example 1,2, hence the uniformity breaks down.
For f = fg.1 let us give an example such that linear relations do not necessarily
induce a break of uniformity. It decomposes over Q(v/—7) as follows:

flz) = (@ +(1—-V-T)2%/2— 1+ V-T)z/2-1)
x(2® + (1 +V-72*/2— (1—-V-T)z/2-1).
Since a polynomial V(z) := (22 — 1)? 4 7 vanishes at (1 & /—7)/2, neglecting
the order () we have
(=2(r1 + 72+ 13) — 1)2 +7=(-2(ra+rs+75) — 1)2 + 7 =0mod p,
hence the difference of the left and the middle implies
6
1 +1ry+1r3 =74+ 15 +76 modp, or Zn—l—l = 0 mod p.
i=1
The left hand suggests to have to check whether Prg(f) = 0 or not for a lower
dimensional set E given by the union of

{(z1,...,26) | (wiy+xiy+aiy)— (@i, +xis+ai,) € Z} for {iy,...,i¢} ={1,...,6}.
But the right hand is always satisfied by

f=ab+a5 4+ 41,
and if the left hand happens, we have t := ry +ro+ 73 = (p— 1)/2 mod p, which

contradicts (—2¢ —1)?+7 = 0 mod p. Therefore we have Prg(f) = 0, as we have
expected.
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