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SOFIC MEASURES AND

DENSITIES OF LEVEL SETS

Alain Thomas

Dedicated to the memory of Pierre Liardet

ABSTRACT. The Bernoulli convolution associated to the real β > 1 and the
probability vector (p0, . . . , pd−1) is a probability measure ηβ,p on R, solution

of the self-similarity relation η =
∑d−1

k=0 pk ·η◦S−1
k , where Sk(x) =

x+k
β

. If β is an

integer or a Pisot algebraic number with finite Rényi expansion, ηβ,p is sofic and

a Markov chain is naturally associated. If β = b ∈ N and p0 = · · · = pd−1 = 1
d
,

the study of ηb,p is close to the study of the order of growth of the number

of representations in base b with digits in {0, 1, . . . , d− 1}. In the case b = 2 and
d = 3 it has also something to do with the metric properties of the continued
fractions.

Communicated by Cornelius Kraaikamp

Introduction

The different sections of this paper are relatively independent. In the first two
sections we talk about the sofic subshift and sofic measures, also usually called
hidden Markov measures, submarkov measures, functions of Markov chains,
rational measures. A sofic probability measure on a space {0, 1, . . . , b−1}N, is the
image of a Markov probability measure by a shift-commuting continuous map,
and can be naturally represented by products of matrices (see for instance [7]).
[3] is a collection of papers about hidden Markov processes, involving connections
with symbolic dynamics and statistical mechanics. See also [4, 17, 18, 20].

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 11P99, 28XX, 15B48.
Keywords: partition function, numeration system, radix expansion, Pisot scale, Bernoulli
convolutions.
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The measures defined by Bernoulli convolution [22], i.e., the measures

ηβ,p :=
∞�
n=1

(
d−1∑
k=0

pkδk/βn

)
,

where β ∈ R, p0, . . . , pd−1 > 0 and
∑
k pk = 1, are sofic if β is an integer.

They are also sofic when β is a Pisot number (i.e., an algebraic number whose
conjugates belong to the open unit disk) with finite Rényi expansion (see [24] for
the definition). A transducer of normalization [15, Theorem 2.3.39] is naturally
associated to β and d. The matrices associated to the measure ηβ,p are easy to
define when β is an integer, β = b ≥ 2. In the case p0 = · · · = pd−1 = 1

d they are
used by different authors (see, for instance [23]) because they are related to the
number of representations of the integer n in base b with digits in {0, . . . , d−1},
let N (n). And the Hausdorff dimensions of the level sets of ηb,p are related
with the lower exponential densities of some sets of integers, on which N (n) has
a given order of growth (Theorem 21). There exist many partial results about
the level sets of the measures defined by products of matrices (see, for instance
[8, 9, 10, 12]).

1. Sofic subshifts

We recall some classical definitions about the subshifts (see for instance [1, 14,
19, 25, 26]). By subshifts we mean closed subsets of {0, 1, . . . , b− 1}N invariant
by the shift σ : (ωn)n∈N �→ (ωn+1)n∈N. Let us give two equivalent definitions
of the sofic subshifts.

���������� 1� A sofic subshift is a subshift recognizable by a finite automa-
ton [1].

���������� 2� A subshift is a sofic iff it is the image of a topological Markov
subshift by a letter-to-letter morphism.

In this definition, “letter-to-letter morphism” can be replaced by “continuous
morphism”, because any continuous morphism (i.e., any continuous map, for the
usual topology, commuting with the shift) has the form

ϕ
(
(ωn)n∈N

)
=

(
ψ(ωn−sωn−s+1 . . . ωn+s)

)
n∈N

with ψ : {0, 1, . . . , b− 1}2s+1 → {0, 1, . . . , b′ − 1}, being understood that ωn = 0
for n ≤ 0.
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��
�� 3� An example of sofic subshift in the sense of Definition 1, is the set
of the labels of the infinite paths in the following automaton:

(this subshift is the set of the sequences (ωn)n∈N ∈ {0, 1}N without factor 102i1
for any i ∈ N ∪ {0}, hence it excludes an infinite set of words and it is not of
finite type). It is sofic in the sense of Definition 2 because it is the image by
the morphism π : (x, y) �→ y of the Markov subshift of the sequences (ξn)n∈N ∈
{(a, 0), (b, 0), (b, 1), (c, 0)}N such that, for any n ∈ N,

ξnξn+1 ∈
{
(a, 0)(b, 0), (a, 0)(b, 1), (b, 0)(a, 0), (b, 1)(c, 0), (c, 0)(b, 0), (c, 0)(b, 1)

}
.

The graph of this Markov subshift is:

	
��
�� 4� An example of sofic subshift in the sense of Definition 2, is the
image of the Markov subshift associated to the graph:

by the letter-to-letter morphism

ϕ : {a, b, c}N → {0, 1}N

associated to

ψ : {a, b, c} → {0, 1}, ψ(a) = ψ(b) = 0, ψ(c) = 1.

As in Example 3, it excludes the words 102i1, i ∈ N ∪ {0}. It is also a sofic
subshift in the sense of Definition 1, because it is recognizable by the following
automaton, where each arrow with initial state x has label ψ(x):

Notice that, if we associate to this automaton a Markov subshift and a mor-
phism by the same method as in Example 3, we recover the initial Markov
subshift and morphism of Example 4.
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2. Markov, sofic and linearly representable measures

We specify now the definitions of the Markov and sofic measures we use in the
sequel.

���������� 5� (i) We call a (homogeneous) Markov probability measure (not
necessarily shift-invariant), a measure μ on the product set {0, 1, . . . , b − 1}N,
defined by setting, for any cylinder set

[ω1 . . . ωn] =
{
(ξi)i∈N : ξ1 . . . ξn = ω1 . . . ωn

}
,

μ[ω1 . . . ωn] = pω1
pω1ω2

. . . pωn−1ωn
, (1)

where p =
(
p0 . . . pb−1

)
is a positive probability vector and

P =

⎛
⎜⎝

p00 . . . p0(b−1)

...
. . .

...
p(b−1)0 . . . p(b−1)(b−1)

⎞
⎟⎠

is a nonnegative stochastic matrix.

Clearly, the support of μ is a Markov subshift, and μ is shift-invariant
(or stationary) iff p is a left eigenvector of P .

(ii) A probability measure on {0, 1, . . . , b′ − 1}N is called sofic if it is the
image of a Markov probability measure by a continuous morphism ϕ = {0, 1, . . .
. . . , b− 1}N → {0, 1, . . . , b′ − 1}N. This morphism can be chosen letter-to-letter:

ϕ
(
(ωn)n∈N

)
=

(
ψ(ωn)

)
n∈N

.

(iii) According to [2] we say that a probability measure η on {0, 1, . . . , b−1}N
is linearly representable if there exist a set of r-dimensional nonnegative row vec-
tors {R0, . . . , Rb−1}, a set of r×r nonnegative matricesM={M0, . . . ,Mb−1} and
a positive r-dimensional column vector C, satisfying both conditions(∑

i

Ri

)
C = 1 and

(∑
i

Mi

)
C = C, (2)

and such that
η[ω1 . . . ωn] = Rω1

Mω2
. . .Mωn

C. (3)

������ 6� If
∑
iMi is irreducible and if Ri = RMi for any i, where R is the

positive left eigenvector of
∑
iMi such that RC = 1, the measure η defined

in (3) is σ-invariant and
η[ω1 . . . ωn] = RMω1

. . .Mωn
C.

The next theorem concerns the linear representation of the sofic measures,
given for instance in [7]. It uses also the ideas of the proof of [2, Theorem 4.28].
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������� 7� A probability measure on {0, 1, . . . , b − 1}N is sofic if and only if
it is linearly representable.

P r o o f. First we note that any Markov measure is linearly representable because
the formula (1) is equivalent to

μ[ω1 . . . ωn] = πω1
Pω2

. . . Pωn

⎛
⎜⎝
1
...
1

⎞
⎟⎠ , (4)

where

π0 =
(
p0 0 . . . 0

)
, π1 =

(
0 p1 . . . 0

)
, . . .

P0 =

⎛
⎜⎝

p00 0 . . . 0
...

...
. . .

...
p(b−1)0 0 . . . 0

⎞
⎟⎠ , P1 =

⎛
⎜⎝
0 p01 . . . 0
...

...
. . .

...
0 p(b−1)1 . . . 0

⎞
⎟⎠ , . . .

Now any sofic measure ν defined from a Markov measure μ and a map

ψ : {0, 1, . . . , b− 1} → {0, 1, . . . , b′ − 1}

is linearly representable because (4) implies

ν[ω′
1 . . . ω

′
n] =

∑
ω1∈ψ−1(ω′

1)
· · ·

∑
ωn∈ψ−1(ω′

n)
μ[ω1 . . . ωn]

= (
∑
ω1∈ψ−1(ω′

1)
πω1

) . . . (
∑
ωn∈ψ−1(ω′

n)
Pωn

)

⎛
⎜⎝
1
...
1

⎞
⎟⎠

= Rω1
Mω2

. . .Mωn
C ,

(5)

where for 0 ≤ i′ ≤ b′, the row vector Ri′ :=
∑
i∈ψ−1(i′) πi, the matrix Mi′ :=

∑
i∈ψ−1(i′) Pi and the column vector C :=

⎛
⎜⎝
1
...
1

⎞
⎟⎠ satisfy both conditions in (2).

Conversely, let η be a linearly representable measure, so there exists some
r-dimensional row vectors R0, . . . , Rb−1, some r× r matrices M0, . . . ,Mb−1 and
r-dimensional column vector C satisfying (2) and (3). We shall modify the linear
representation of η in the following way: let Δ be the diagonal matrix whose
diagonal entries are the entries of C; setting R′

i := RiΔ, M ′
i := Δ−1MiΔ and

C′ := Δ−1C, the entries of C′ are 1 and

η[ω1 . . . ωn] = R′
ω1
M ′
ω2
. . .M ′

ωn
C′.
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Setting

R′′
0 :=

(
R′

0 0 . . . 0
)
, R′′

1 :=
(
0 R′

1 . . . 0
)
, . . . ,

M ′′
0 :=

⎛
⎜⎝
M ′

0 0 . . . 0
...

...
. . .

...
M ′

0 0 . . . 0

⎞
⎟⎠ , M ′′

1 :=

⎛
⎜⎝
0 M ′

1 . . . 0
...

...
. . .

...
0 M ′

1 . . . 0

⎞
⎟⎠ , . . . ,

C′′ :=

⎛
⎜⎝
C′
...
C′

⎞
⎟⎠

we have a third linear representation of η:

η[ω1 . . . ωn] = R′′
ω1
M ′′
ω2
. . .M ′′

ωn
C′′.

From (2), p :=
∑
iR

′′
i is a probability vector and P :=

∑
iM

′′
i is a stochas-

tic matrix, they define a Markov probability measure μ on the product set
{0, 1, . . . , rb − 1}N, and η is sofic because it is the image of μ by the morphism
defined from the map ψ : i �→

⌊
i
r

⌋
, i ∈ {0, 1, . . . , rb− 1}. �

3. Level sets and density spectrum associated
to a map f : N → R

∗
+

3.1. Position of the problem

This section is independent of the previous. In Theorem 9 below we do not
make any hypothesis on the map f : N → R

∗
+ but, in the examples we consider

later, f has a polynomial rate of growth, meaning that

−∞ < α1 := lim inf
n→∞

log f(n)

logn
≤ α2 := lim sup

n→∞
log f(n)

logn
< +∞ . (6)

Our purpose is to associate to any α ∈ [α1, α2], a set of positive integers E(α)
as large as possible such that

lim
n∈E(α), n→∞

log f(n)

logn
= α (7)

(the notation limn∈E, n→∞ un stands for limk→∞ unk
, where E = {n1, n2, . . . }

with n1 < n2 < . . . ). Then we call “level sets” the sets E(α), and “density
spectrum” the map which associates to α the “density” (in the following sense)
of E(α): because of the following remark, we do not use the natural densities
defined for any S ⊂ N by

d−(S) := lim inf
N→∞

#S ∩ [1, N)

N
,

96



SOFIC MEASURES AND DENSITIES OF LEVEL SETS

d+(S) := lim sup
N→∞

#S ∩ [1, N)

N

but the exponential densities defined by

dexp− (S) := lim inf
N→∞

log
(
#S ∩ [1, N)

)
logN

,

dexp+ (S) := lim sup
N→∞

log
(
#S ∩ [1, N)

)
logN

.

������ 8� One cannot expect to find for any α in a non trivial interval [α1, α2],
a set E(α) with positive natural density d−(E(α)) and satisfying the condition
(7). Indeed if we have d−(E(α)) > 0 for any α in a non countable set A, there
exists ε > 0 such that d−(E(α)) ≥ ε for infinitely many values of α. When α �= β,
the set E(α)∩E(β) is obviously finite, so by removing a finite number of elements
from one of these sets, E(α) and E(β) are disjoint. One can construct in this way
a sequence of disjoint sets of positive integers E(αn) such that d−(E(αn)) ≥ ε,
but this is in contradiction with the following inequalities (deduced from the
general formula lim infn→∞(un + vn) ≥ lim infn→∞(un) + lim infn→∞(vn)):

1 ≥ d−

( ⋃
n∈N

E(αn)
)

≥
∑
n∈N

d−
(
E(αn)

)
.

������� 9� We associate to any map f : N → R
∗
+ and to any α ≥ 0, ε > 0,

the set

E(α, ε) :=
{
n ∈ N : α− ε ≤ log f(n)

logn
≤ α+ ε

}
. (8)

There exist some integers 1 = N1 < N2 < · · · such that the set

E(α) :=
⋃
k∈N

(
E(α, 1/k) ∩ [Nk, Nk+1, )

)
, (9)

has densities

d−
(
E(α)

)
= limε→0 d−

(
E(α, ε)

)
= infε>0 d−

(
E(α, ε)

)
,

dexp−
(
E(α)

)
= limε→0 d

exp
−

(
E(α, ε)

)
= infε>0 d

exp
−

(
E(α, ε)

)
,

d+
(
E(α)

)
= limε→0 d+

(
E(α, ε)

)
= infε>0 d+

(
E(α, ε)

)
,

dexp+

(
E(α)

)
= limε→0 d

exp
+

(
E(α, ε)

)
= infε>0 d

exp
+

(
E(α, ε)

)
.

(10)

If E(α) is not finite, one has limn∈E(α), n→∞
log f(n)
logn = α and one says that

E(α) is a level set associated to α. One also says that dexp− (E(·)) and dexp+ (E(·))
are the density spectrums of f because they don not depend on the construction
of E(α) in (9), but only depend on the exponential densities of the sets E(α, ε).
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The second subsection, independent on the first, will be used later to prove
the theorem.

3.2. A general lemma about the subsets of N

Given a sequence (Ek)k of subsets of N, monotonic for the inclusion,
we construct a subset of N whose densities are the limits of the ones of Ek.

����� 10� Let (Ek)k be a sequence of subsets of N, non-increasing or non-
decreasing for the inclusion. There exist some integers 1 = N1 < N2 < · · ·
such that the set

E =
⋃
k∈N

(
Ek ∩ [Nk, Nk+1)

)
(11)

has densities

d−(E) = �− := lim
k→∞

d−(Ek), dexp− (E) = �exp− := lim
k→∞

dexp− (Ek),

d+(E) = �+ := lim
k→∞

d+(Ek), dexp+ (E) = �exp+ := lim
k→∞

dexp+ (Ek).
(12)

P r o o f. Let us define the integers 1 = N1 < N2 < · · · by induction: we suppose
that we know the value of Nk for some k, and we search Nk+1 large enough
in view to obtain (12). We have E′

k ⊂ Ek ⊂ E′′
k with

E′
k := Ek ∩ [Nk,∞) and E′′

k := Ek ∪ [1, Nk),

and E′
k, E

′′
k have same densities as Ek. So, by definition of “limitinf” and

“limitsup”, we can chose Nk+1 such that for all N ≥ Nk+1,

N
(
d−(Ek)− 1

k

)
≤ #E′

k ∩ [1, N) ≤ #E′′
k ∩ [1, N) ≤ N

(
d+(Ek) +

1
k

)
,

Ndexp
− (Ek)− 1

k ≤ #E′
k ∩ [1, N) ≤ #E′′

k ∩ [1, N) ≤ Ndexp
+ (Ek)+

1
k

N
(
d−(Ek+1)− 1

k

)
≤#Ek+1 ∩ [1, N) ≤ N

(
d+(Ek+1) +

1
k

)
,

Ndexp
− (Ek+1)− 1

k ≤#Ek+1 ∩ [1, N) ≤ Ndexp
+ (Ek+1)+

1
k . (13)

Using again the definition of “limitinf” and “limitsup”, we can impose a supple-
mentary conditions to Nk+1, according to the value of k mod. 4:

if k ≡ 0 mod. 4, #E′′
k ∩ [1, Nk+1) ≤ Nk+1

(
d−(Ek) + 1

k

)
if k ≡ 1 mod. 4, #E′′

k ∩ [1, Nk+1) ≤ N
dexp
− (Ek)+

1
k

k+1

if k ≡ 2 mod. 4, Nk+1

(
d+(Ek)− 1

k

)
≤ #E′

k ∩ [1, Nk+1)

if k ≡ 3 mod. 4, N
dexp
+ (Ek)− 1

k

k+1 ≤ #E′
k ∩ [1, Nk+1).

(14)

Since

E′
k ∩ [1, Nk+1) ⊂ E ∩ [1, Nk+1) ⊂ E′′

k ∩ [1, Nk+1),
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we deduce from (13) (applied to N = Nk+1) and (14) that, according to the
value of k mod. 4,

lim
k≡0
k→∞

#E ∩ [1, Nk+1)

Nk+1
= �−, lim k≡1

k→∞

log
(
#E∩[1,Nk+1)

)
logNk+1

= �exp− ,

lim
k≡2
k→∞

#E ∩ [1, Nk+1)

Nk+1
= �+, lim k≡3

k→∞

log
(
#E∩[1,Nk+1)

)
logNk+1

= �exp+ .

(15)

For any k ∈ N and Nk+1 < N ≤ Nk+2 we have the following inclusions,
if the sequence of sets (Ek)k is non-increasing:

Ek+1 ∩ [1, N) ⊂ E ∩ [1, N) ⊂ E′′
k ∩ [1, N) (16)

while, if the sequence of sets (Ek)k is non-decreasing:

E′
k ∩ [1, N) ⊂ E ∩ [1, N) ⊂Ek+1∩ [1, N). (17)

Now, (12) follows from (16), (17), (13) and (15). �

������ 11� If one remove the hypothesis that (Ek)k is monotonic, it may
happen that the lower (resp. upper) densities of the set E defined by (11) are
smaller (resp. larger) that the limitinf (resp. the limitsup) of the corresponding
densities of Ek, even if the sequence (Nk)k increases quickly, so the method used
for the proof of Lemma 10 do not apply. Suppose for instance that, for some
positive integer κ, the set E1 = · · · = Eκ−1 has lower density 1/2 and more
precisely,

#
(
E ∩ [1, Nκ)

)
= #

(
E1 ∩ [1, Nκ)

)
= 
Nκ/2�.

Suppose that the set Eκ is distinct from E1 but has also lower density 1/2 with,
for instance, Eκ ∩ [1, 2Nκ) = [1, Nκ). Then if Nκ+1 ≥ 2Nκ, the integer N = 2Nκ
satisfy

#
(
E ∩ [1, N)

)
= #

(
E1 ∩ [1, Nκ)

)
= 
N/4�.

Now suppose about the lower exponential density, that E1 = · · · = Eκ−1

have lower exponential density 1/2, more precisely,

#
(
E ∩ [1, Nκ)

)
= #

(
E1 ∩ [1, Nκ)

)
= 
Nκ1/2�.

Suppose that Eκ has lower exponential density 1/2 with, for instance, Eκ ∩
[1, Nκ

2) = [1, Nκ). Then if Nκ+1 ≥ Nκ
2, the integer N = Nκ

2 satisfies

#
(
E ∩ [1, N)

)
= #

(
E1 ∩ [1, Nκ)

)
= 
N1/4�.

3.3. Proof of Theorem 9

P r o o f. Lemma 10 applies to the non-increasing sequence

Ek = E(α, 1/k). �
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��
�� 12� Let f(n) = n1+sinn then, given α ∈ [0, 2] and ε > 0, E(α, ε) is
the set of the integers n such that 1 + sinn ∈ [α − ε, α + ε]. It has a positive
usual density hence it has exponential density 1, as well as E(α). The density
spectrum of f is:

Figure 1. Exponential density of E(α) in function of α in Example 12.

	
��
�� 13� The number of representations of n in base 2 with digit in {0, 1, 2},
defined by

N (n) : #

{
(ωi)i≥0 : n =

∞∑
i=0

ωi2
i, ωi ∈ {0, 1, 2}

}
, (18)

has a polynomial rate of growth: (6) holds with α1 = 0 (because, for any k,

N (2k − 1) = 1) and α2 = log 1+
√
5

2 / log 2 (see [5, Corollary 6.10]).

By [11, Theorem 19] there exists a subset S ⊂ N of natural density 1—and
consequently exponential density 1—such that the limit

α0 := lim
n∈S, n→∞

logN (n)

logn

exists and is positive. Since S ∩ [N,∞) ⊂ E(α0, ε) for any ε > 0 and for N large
enough, one has also

d±
(
E(α0)

)
= dexp±

(
E(α0)

)
= 1.

Nevertheless, let us deduce from [11, Corollary 32] that

∃α3 > α0, d
exp
+

(
E(α3)

)
> 0. (19)

From [11, Corollary 32], given α′
0 and β′

0 in the interval
(
α0,

log 3
log 2 − 1

)
one has

for N large enough

#
{
n < N :

logN (n)

log n
> α′

0

}
≥ Nβ′

0 (20)

and [11, Remark 21-3] ensures that
(
α0,

log 3
log 2 − 1

)
�= ∅.
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To prove (19) by contraposition, suppose that

dexp+ (E(α)) < β′
0 for any α ≥ α′

0.

Then by the definition of E(α), for each α ≥ α′
0 there exists εα > 0 such that

dexp+ (E(α, εα)) < β′
0. There exists βα < β′

0 such that, for N large enough,

#
{
n < N : α− εα ≤ logN (n)

logn
≤ α+ εα

}
≤ Nβα .

The open intervals (α − εα, α + εα), α ≥ α′
0, cover the compact set [α′

0, 2],
so there exists a subcover of [α′

0, 2] by n0 intervals of this form. Let β < β′
0

be the maximum of βα for α being the center of such an interval. We have

#
{
n < N : α′

0 ≤ logN (n)

logn
≤ 2

}
≤ n0N

β (N large enough). (21)

Since one check easily that logN (n)
logn ≤ 2 for any n ∈ N, (21) is in contradiction

with (20), hence (19) holds and more precisely there exists

α3 ≥ α′
0 > α0 and β3 ≥ β′

0

such that dexp+ (E(α3)) = β3. Since
log 3
log 2 − 1 ≈ 0.585 the upper density spectrum

of N is:

Figure 2. Upper exponential density of E(α) in function of α in Example 13.
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Figure 3. The values of
logN (n)

logn
for n ∈ [212, 213) in Example 13.

The order of growth of N can be represented by this graph.

4. Relation between singularity spectrum and
density spectrum

Let η be a probability measure on {0, 1, . . . , b − 1}N, the level sets E(α) are
defined by

E(α) :=

{
(ωn)n∈N : lim

k→∞
log η[ω1 . . . ωk]

log(1/bk)
= α

}
(22)

and one calls the singularity spectrum, the map

α �→ H-dim
(
E(α)

)
,

where H-dim is the Hausdorff dimension, on the understanding that the dis-
tance between two sequences (ωn)n∈N and (ω′

n)n∈N is b1−inf{i : ωi 
=ω′
i}.

Any ball is a cylinder set, and the diameter of a cylinder set is

δ
(
[ω1 . . . ωk]

)
:= b−k.

It is natural to associate to η the function fη : N ∪ {0} → [0, 1] defined as
follows from the expansion of n in base b:

fη(n) := η[ω1 . . . ωk] for any n =
b
ω1b

k−1 + · · ·+ ωkb
0,

where the notation =
b
means that ∀i, ωi ∈ {0, 1, . . . , b − 1} and ω1 �= 0.

Notice that fη depends only on the restriction of η to the set of the sequences
(ωn)n∈N such that ω1 �= 0.
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���
������� 14� Let η be a probability measure on {0, 1, . . . , b− 1}N such that

lim
n→∞

log η[0ω1 . . . ωn]

log η[ω1 . . . ωn]
= 1 for any (ωn)n∈N.

The level sets E(·) (of the measure η) and E(·) (of the function fη) satisfy the

inequality
H-dim

(
E(α)

)
≤ d exp

−
(
E(−α)

)
.

P r o o f. From the hypothesis on the probability η, a sequence (ωn)n∈N with the
first term ω1 = 0 belongs to E(α) if and only if (ωn+1)n∈N do. The set E′(α)
of the sequences (ωn)n∈N ∈ E(α) with the first term ω1 �= 0, has same Hausdorff
dimension as E(α) because

E(α) =
⋃
n≥0

{0n} ×E′(α) and H-dim
(
{0n} ×E′(α)

)
= H-dim

(
E′(α)

)
.

According to (10) it is sufficient to prove for any k ∈ N the inequality

H-dim(E′(α)) ≤ d exp
−

(
E
(
−α, 1

k

))
.

The integer k is now fixed and, by definition of the limit inf, there exists an
infinite set E ⊂ N such that

lim
N∈E, N→∞

log
(
#E(−α, 1k ) ∩ [1, N)

)
logN

= d exp
−

(
E
(
−α, 1

k

))
. (23)

One can assume that the elements of E have the form N = bi with i ∈ N:
indeed N is in some interval [bi(N), bi(N)+1), the denominator logN in (23) is
equivalent to log

(
bi(N)

)
, and the numerator is greater or equal to

log

(
#E

(
−α, 1

k

)
∩

[
1, bi(N)

))
.

Let ω ∈ E′(α). There exists κ ∈ N such that

α− 1

2k
≤ log η[ω1 . . . ωκ]

log(1/bκ)
≤ α+

1

2k
(24)

and, since these inequalities are true for any κ large enough, one can chose
κ = κ(ω), such that κ ≥ 2kα+ 2 and bκ ∈ E. Let us prove that the integer

n = n(ω) := ω1b
κ−1 + · · ·+ ωκb

0 (25)

belongs to the level set E(−α, 1k ) if k is large enough. The numerator in (24)
is log(fη(n)) because ω1 �= 0.
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One has

− log(fη(n))

logn
=

log η[ω1 . . . ωκ]

log(1/bκ)

log(bκ)

logn

hence, using (24),(
α− 1

2k

) log(bκ)
logn

≤ − log(fη(n))

logn
≤

(
α+

1

2k

) log(bκ)
logn

.

Now

1 ≤ log(bκ)

logn
≤ log(bκ)

log(bκ−1)
=

κ

κ− 1
and

(
α+

1

2k

) κ

κ− 1
≤ α+

1

k

(consequence of the hypothesis κ ≥ 2kα+ 2), so n ∈ E(−α, 1k ).

There exists a disjoint cover of E′(α) by a finite or countable family of cylinder
sets Ci, each of the Ci having the form [ω1 . . . ωκ], where κ = κ(ω) is defined
in (24). We consider the cylinder sets Ci such that κ(ω) has a given value κ0.
The corresponding integers n(ω) are distinct and belong to

E(−α, 1
k
) ∩ [1, bκ0).

By the hypotheses on κ(ω) one consider only the integers κ0 ≥ 2kα+2 such that
bκ0 ∈ E; in particular, the larger is k, the larger is κ0. Let ε > 0 and suppose
that k is large enough so that, applying (23) to N = bκ0 and setting

dk = dexp−
(
E
(
− α,

1

k

))
,

log
(
#E(−α, 1

k
) ∩ [1, bκ0)

)
log bκ0

≤ dk + ε.

Consequently, for any s > dk + ε,∑
i

δ(Ci)
s ≤

∞∑
κ0=0

bκ0(dk+ε)b−κ0s =
1

1− bdk+ε−s
,

proving that
H-dim(E′(α)) ≤ dk + ε.

Since it is true for any k large enough and any ε > 0, this implies

H-dim(E′(α)) ≤ dexp− (E(−α)).
�
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5. Bernoulli convolution and number of representations
in integral base

5.1. Bernoulli convolution in integral base and related matrices

The Bernoulli convolution [6, 22] in integral base b ≥ 2, associated to a posi-
tive probability vector p = (p0, . . . , pd−1) with d ≥ b, is the probability measure
η = ηb,p defined by setting, for any interval I ⊂ R

ηb,p(I) := Pp

({
(ωk)k∈N : 0 ≤ ωk ≤ d− 1,

∑
k

ωk
bk

∈ I
})
, (26)

where Pp the product probability defined on {0, . . . , d−1}N from the probability
vector p.

We define also, on the symbolic space {0, 1, . . . , b− 1}N, the probability mea-
sures

ηq,symb[ε1 . . . εk] :=
η(q + Iε1...εk)

η(q + [0, 1))
(q = 0, 1, 2, . . . ),

ηsum,symb[ε1 . . . εk] :=

∞∑
q=0

η(q + Iε1...εk). (27)

Let us prove that both are sofic.

������ 15� The shift-invariant measure ηsum,symb is the image of Pp by the
shift-commuting map ϕ which associates to any (ωk)k∈N, the b-expansion of the
fractional part of

∑
k
ωk

bk
. Unfortunately ϕ is discontinuous:

lim
n→∞

ϕ((b− 1)n0̄) = b− 1 is different from ϕ( lim
n→∞

(b− 1)n0̄) = 0̄.

So it is not sufficient to use this map for proving that ηsum,symb is sofic.

Let the bi-infinite matrix

M∞ :=

⎛
⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

...
. . .

...
...

...

. . . 0 pd−1 . . . pd−b−1 . . . p0 . . . 0 0 . . .

. . . 0 0 . . . pd−1 . . . pb . . . p0 0 . . .
...

...
...

. . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ , (28)

where each row contains the same probability vector
(
pd−1 . . . p0

)
, shifted

b times to the right at the following row. We define in an unique way some
matrices M0, . . . ,Mb−1, by setting that M0, . . . ,Mb−1 are submatrices of M∞
of size a+ 1 :=

⌈
d−1
b−1

⌉
and
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M0 : =

(
p0 0 . . .
...

...
. . .

)
, M1 :=

(
p1 p0 0 . . .
...

...
...

. . .

)
, . . . ,

Mb−1 :=

(
pb−1 pb−2 . . .
...

...
. . .

)
. (29)

Assuming by convention that pi = 0 for i �∈ {0, . . . , d− 1}, we can write

Mj = (pj+bq−q′) 0≤q≤a

0≤q′≤a

=

⎛
⎜⎜⎜⎝

pj pj−1 . . . pj−a
pj+b pj+b−1 . . . pj+b−a
...

...
. . .

...
pj+ab pj+ab−1 . . . pj+ab−a

⎞
⎟⎟⎟⎠ . (30)

������ 16� About the choice of the size of the matrices, a =
⌈
d−1
b−1

⌉
− 1 is

the largest integer such that the matrix
∑
j(pj+bq−q′) 0≤q≤a

0≤q′≤a

is irreducible, and

the smallest integer such that its transpose is stochastic.

������� 17� The following formula gives the measure of the translated b-
-adic interval q + Iε1...εk with q ∈ {0, 1, . . . , a}, ε1, . . . , εk ∈ {0, 1, . . . , b− 1} and

Iε1...εk :=
[∑k

i=1
εi
bi ,

∑k
i=1

εi
bi +

1
bk

)
:

η(q + Iε1...εk) = EqMε1 . . .MεkC, (31)

where E0, E1, . . . , Ea are the canonical basis (a + 1)-dimensional row vectors
and C the unique positive eigenvector of the irreducible matrix

∑
iMi such that∑

iEiC = 1. Consequently the measures ηq,symb and ηsum,symb are linearly rep-
resentable.

P r o o f. Let I = Iε1...εn and I ′ = Iε2...εn . With the convention that pi = 0
for any i �∈ {0, 1, . . . , d− 1}, we have

η(q + I) =

d−1∑
i=0

P
({
ω1 = i and

∑
k

ωk+1

bk
∈ qb+ ε1 − i+ I ′

})
=

∑
i∈Z

pi η (qb+ ε1 − i+ I ′)

=
∑
q′∈Z

pqb+ε1−q′ η (q
′ + I ′) .
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In fact q′ belongs to {0, 1, . . . , a}, otherwise η (q′ + I ′) is null. Since the coeffi-
cients pqb+ε1−q′ for q, q

′ ∈ {0, 1, . . . , a}, are the entries of Mε1 ,⎛
⎜⎜⎜⎝

η(I)
η(I + 1)

...
η(I + a)

⎞
⎟⎟⎟⎠ =Mε1

⎛
⎜⎜⎜⎝

η(I ′)
η(I ′ + 1)

...
η(I ′ + a)

⎞
⎟⎟⎟⎠

and, by induction,⎛
⎜⎜⎜⎝

η(I)
η(I + 1)

...
η(I + a)

⎞
⎟⎟⎟⎠ =Mε1 . . .MεkC with C :=

⎛
⎜⎜⎜⎝

η([0, 1))
η([1, 2))

...
η([a, a+ 1))

⎞
⎟⎟⎟⎠ . (32)

In the particular case k = 1 we have I = Iε1 and, making the sum in (32)
for ε1 = 0, 1, . . . , b − 1, we deduce that C is a eigenvector of

∑
iMi. Moreover

C is positive because the measure of any nontrivial subinterval of
[
0, d−1

b−1

]
is

positive, and
∑
i EiC = 1 because [0, a+ 1] ⊃

[
0, d−1

b−1

]
(the support of η). �

��������� 18� The measures ηq,symb and ηsum,symb are sofic, as well as the
measure η′ defined by

η′[ε1 . . . εk] := ηsum,symb[εk . . . ε1].

Moreover, η′ is the continuous image by the map i �→
⌊

i
a+1

⌋
, of the Markov

measure on {0, 1, . . . , (a+ 1)b− 1}N of transition matrix

Pη′ :=

⎛
⎜⎝
tM0

tM1 . . . tMb−1

...
...

. . .
...

tM0
tM1 . . . tMb−1

⎞
⎟⎠

and initial probability vector (
tC . . . tC

)
.

P r o o f. According to Theorems 17 and 7, ηq,symb and ηsum,symb are sofic. For-
mula (31) gives a linear representation of η′:

η′[ε1 . . . εk] =tC t(Mε1) . . .
t (Mεk)

⎛
⎜⎝
1
...
1

⎞
⎟⎠ .

According to the proof of the converse part of Theorem 7, Pη′ is the transition
matrix and

(
tC . . . tC

)
is the initial probability vector of the Markov chain

associated to η′. �
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5.2. The matrices Mj are also related to the transducer of normal-
ization [15] and to the number of representations of the integers
in base b

���������� 19� (i) The normalization in base b, with d ≥ b digits, is the map

n : {0, . . . , d− 1}N → {0, . . . , b− 1}Z
(ωi)i∈N �→ (εi)i∈Z such that

∞∑
i=1

ωi
bi

=

∞∑
i=−∞

εi
bi

(
=

∞∑
i=−(h−1)

εi
bi

with ε−(h−1) �= 0 if (ωi)i∈N �= (0)i∈N

)

with the additional condition that the εi are not eventually b− 1.

(ii) The normalization in base b also associates to a finite sequence

(ωh−1, . . . . . . , ω0) with terms in {0, . . . , d− 1}
and distinct from 0h, the sequence

(εk−1, . . . , ε0) with terms in {0, . . . , b− 1}
such that

ωh−1b
h−1 + · · ·+ ω0b

0 = εk−1b
k−1 + · · ·+ ε0b

0 and εk−1 �= 0. (33)

Notice that if we put ωh = ωh+1 = · · · = ωk−1 = 0 we have

n(ωk−1, . . . , ω0, 0, 0, . . . ) = (. . . , 0, 0, εk−1, . . . , ε0, 0, 0, . . . ).

(iii) The number of b-representations of n with digits in {0, . . . , d− 1} is

N (n) := #
{
(ωi)i≥0 : n =

∞∑
i=0

ωib
i, ωi ∈ {0, . . . , d− 1}

}
.

The number of b-representations of length k is

Nk(n) := #
{
(ω0, . . . , ωk−1) : n =

k−1∑
i=0

ωib
i, ωi ∈ {0, . . . , d− 1}

}
.

Now we define the transducer T as follows:

where q belongs to the set of states {0, . . . , a} with a =
⌈
d−1
b−1

⌉
−1, and quotb(q+i)

and remb(q+i) are, respectively, the quotient and the remainder of the Euclidean
division of q+i by b. It is the transpose of the transducer of normalization defined
by Frougny and Sakarovitch in [15, Propositions 2.2.5, 2.2.6 and Theorem 2.2.7],
which chose {−a, . . . , a} as set of states.
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���
������� 20� Let us consider the matrices M0, . . . ,Mb−1 defined by (29)
or (30), where we suppose that p0 = · · · = pd−1 = 1

d .

(i) The transpose of dMj is the incidence matrix of the graph of set of vertices
{0, . . . , a}, whose edges are the edges of T with output label j.

(ii) Let w = ε1 . . . εk ∈ {0, . . . , b− 1}k and Mw =Mε1 . . .Mεk , we have

dkMw =

⎛
⎜⎜⎜⎝

Nk(n) Nk(n− 1) . . . Nk(n− a)
Nk(n+ bk) Nk(n+ bk − 1) . . . Nk(n+ bk − a)

...
...

. . .
...

Nk(n+ abk) Nk(n+ abk − 1) . . . Nk(n+ abk − a)

⎞
⎟⎟⎟⎠ ,

where n = ε1b
k−1 + · · ·+ εkb

0.

The first row of dkMw is also equal to
(
N (n) N (n− 1) . . . N (n− a)

)
,

so we have
ηb,p(Iε1...εk) =

1

dk
(
N (n) N (n− 1) . . . N (n− a)

)
C. (34)

(iii) To normalize a finite sequence (ξh−1, . . . , ξ0) ∈ {0, . . . , d−1}h, one enters
in T the digits ξ0, . . . , ξh−1, 0, 0, . . . from the initial state 0, and one obtain in
output the digits ζ0, . . . , ζk−1, 0, 0, . . . such that

ξh−1b
h−1 + · · ·+ ξ0b

0 = ζk−1b
k−1 + · · ·+ ζ0b

0. (35)

P r o o f. (i) In (30) we have pj+bq−q′ = 1
d when j + bq − q′ ∈ {0, . . . , d − 1},

that is, when a edge of output label j relates q′ to q in T .

(ii) Consequently the entry of the (q + 1)th row and (q′ + 1)th column of the
matrix t(dMεk) . . .

t (dMε1) is the number of paths from q to q′ whose output
label is εk . . . ε1. The input label ωk . . . ω1 and the states qk, . . . , q0 of such a path
satisfy

qk + ωk = bqk−1 + εk (with qk = q)

qk−1 + ωk−1 = bqk−2 + εk−1

...
q1 + ω1 = bq0 + ε1 (with q0 = q′).

(36)

We deduce
k∑
i=1

(qi + ωi)b
k−i = b

k∑
i=1

qi−1b
k−i +

k∑
i=1

εib
k−i

and, after simplification,
k∑
i=1

ωib
k−i = q′bk − q +

k∑
i=1

εib
k−i (37)

meaning that ω1 . . . ωk is a representation of length k of n+ bkq′ − q.
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Conversely, if (37) holds, then (36) holds with

qi = q′bi +
∑
j≤i

(εj − ωj)b
i−j .

It remains to prove that (36) implies qi ≤ a by descending induction. Since
qk = q one has qk ≤ a. If qi ≤ a, the Euclidean divisions in (36) imply

qi−1 =

⌊
qi + ωi
b

⌋
≤

⌊
a+ d− 1

b

⌋
,

where the r.h.s. is at most a because⌊
a+ d− 1

b

⌋
≤ a+ d− 1

b
<

d−1
b−1 + d− 1

b
=
d− 1

b− 1
≤

⌈
d− 1

b− 1

⌉
= a+ 1.

(iii) In particular, if (37) holds with q = q′ = 0 then ωk . . . ω1 is the input
label and εk . . . ε1 the output label of a path from the state 0 to the state
0. Suppose that (35) holds. Equivalently, (37) holds with q = q′ = 0, with
ω1 . . . ωk = 0h−kξh−1 . . . ξ0 and ε1 . . . εk = ζk−1, . . . , ζ0. This proves that, if we
enter the digits ξ0, . . . , ξh−1, 0, 0, . . . from the initial state 0, the output digits
are ζ0, . . . , ζk−1. �

������� 21� In the case p0 = · · · = pd−1 = 1
d the level sets of the measure

ηb,p, that is, the sets

E(α) :=

{
x ∈ R : lim

r→0

log ηb,p
(
(x− r, x+ r)

)
log r

= α

}
,

are related to the level sets E(·) of the function N by the inequality

H-dim
(
E(α)

)
≤ dexp−

(
E
( log d
log b

− α
))

. (38)

P r o o f. We first consider the measure η0,symb on the symbolic space {0, . . .
. . . , b− 1}N and we prove that the level sets E0,symb(α) of this measure, defined
as in (22), satisfy (38). The condition of Proposition 14 is satisfied: indeed (31)
implies

η0,symb[0ε1 . . . εk]

η0,symb[ε1 . . . εk]
=

1

d
and thus lim

k→∞
log η0,symb[0ε1 . . . εk]

log η0,symb[ε1 . . . εk]
= 1.

For any n =
b
ε1b

k−1 + · · · + εkb
0 one has bk−1 ≤ n < bk and consequently,

k = k(n) = 1 +
⌊
logn
log b

⌋
. By (34),

η0,symb[ε1 . . . εk(n)] =
1

dk(n)η([0, 1))

(
N (n) . . . N (n− a)

)
C. (39)
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Let f(n) = η0,symb[ε1 . . . εk(n)], by Proposition 14 one has

H-dim
(
E0,symb(α)

)
≤ dexp− (Ef (−α)). (40)

We deduce from (39) that f has the same density spectrum as the function
g(n) := 1

dk(n)N (n), because, from [11, Lemma 9 (ii)], there exists a positive

constant K such that

1

K logn
≤ N (n)

N (n− 1)
≤ K logn. (41)

Since limn→∞
(

logN (n)
logn − log g(n)

logn

)
= log d

log b , the level sets E(·) of N are related

to the ones of g and f : one has

dexp−

(
E
( log d
log b

− α
))

= dexp− (Eg(−α)) = dexp− (Ef (−α)) .

With (40) one deduce

H-dim
(
E0,symb(α)

)
≤ d exp

−

(
E
( log d
log b

− α
))

. (42)

Let us now prove by a classical method that the real x =
b

∑∞
k=1

εk
bk

belongs

to E(α) ∩ (0, 1) if and only if (εk)k belongs to E0,symb(α) \ {0̄}. This is due
to the fact that Iε1...εk ⊂

(
x − 1

bk
, x + 1

bk

)
, and conversely (x − r, x + r) ⊂

Iw ∪ Iw′ ∪ Iw′′ holds for 1
bk+1 ≤ r < 1

bk
, the words w′ and w′′ being respectively

the lexicographical predecessor and the lexicographical successor of w = ε1 . . . εk.
We use of course the relation (34) and the inequality (41). Now let us prove that

H-dim
(
E(α) ∩ [0, 1)

)
= H-dim

(
E0,symb(α)

)
. (43)

To any cover of E0,symb(α) corresponds a cover of E(α) ∩ [0, 1), and conversely
to any cover of E(α)∩ [0, 1) and to any interval (a, a′) of this cover, correspond
two cylinder sets [w], [w′] such that (a, a′) ⊂ Iw ∪ Iw′ , where the words w,w′

have length k such that 1
bk+1 ≤ a′ − a < 1

bk
. One deduce easily that (43) holds.

The measure ηb,p is obviously symmetrical with respect to the middle of its

support
[
0, d−1

b−1

]
. So E(α) is a symmetric subset of

[
0, d−1

b−1

]
of ηb,p, and it

remains to prove that E(α) ∩ (q, q + 1) = q + E(α) ∩ (0, 1) for any posi-
tive integer q < 1

2
d−1
b−1 (hence q �= a). Given a positive integer k0, we con-

sider the b-adic intervals Iε1...εk such that k ≥ k0 + a and ε1 . . . εk0 �= 0k0 .
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The entries of Mε1 . . .Mεk0+a
are positive, except possibly the ones of its last

row: this is due to the fact that the entries of dMj are at least equal to the ones
of the (0, 1)-matrix

(δij) 0≤i≤a
0≤j≤a

=

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0 0 0 0
1 1 1 0 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 1 1 1
0 0 0 0 . . . 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

such that δij = 1 ⇔ i �= a and |i− j| ≤ 1, except the second entry of the first
row of dM0 which is 0. Denoting by C(k0) the largest entry of the matrix (with
positive integral entries) dk0+aEqMε1 . . .Mεk0+a

for any q ∈ {0, . . . , a − 1} and

ε1 . . . εk0+a ∈ {0, . . . , b − 1}k0+a such that ε1 . . . εk0 �= 0k0 , the formula (31)
implies

1

C(k0)
≤ η(q + Iε1...εk)

η(Iε1...εk)
≤ C(k0).

Since it is true for any k0 ∈ N and q ∈ {0, . . . , a− 1}, one deduce

E(α) ∩ (q, q + 1) = q +E(α) ∩ (0, 1) for 0 < q < a,

and (38) follows from (42), (43) and from the symmetry of E(α). �

6. The general framework in Pisot base

The normalization map [15] in the integral or Pisot base β > 1, associates
to each sequence (ωi)i∈N ∈ {0, 1, . . . , d − 1}N the sequence (εi)i∈Z ∈ {0, 1, . . .
. . . , �β� − 1}Z satisfying both conditions:∑

i∈N

ωi
βi

=
∑
i∈Z

εi
βi
,

∀i ∈ Z,
∑
j>i

εj
βj

<
1

βi
(Parry β-admissibility condition [21]).

(44)

6.1. The tranducer T associated to β and d
The states of the transducer are the carries of the normalization of the se-

quences (ωi)i∈N with digits in {0, 1, . . . , d− 1}. More precisely suppose that (44)
holds and put ωi = 0 for any i ≤ 0; then for each i ∈ Z the sum

∑
j>i

ωj

βj

is equal to
∑
j>i

εj
βj plus a real number that we denote by qi

βi . So we call

“the ith carry”, the real qi defined by both relations

qi
βi

=
∑
j>i

ωj − εj
βj

=
∑
j≤i

εj − ωj
βj

. (45)
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The first relation implies

qi ∈ (−1, α] with α :=
d− 1

β − 1
.

The second relation implies
qi = βqi−1 − ωi + εi (46)

and implies that qi belongs to the set

Sβ,d :=

⎧⎨
⎩
i−1∑
j=0

αjβ
j : i ∈ N, αj ∈ (−d, �β�) ∩ Z,

⎫⎬
⎭ ∩ (−1, α].

Garsia’s separation lemma [16] ensuring that Sβ,d is finite, we can chose Sβ,d
as set of states of T and assume that the arrows have the form

q
ω / ε

−−−−−−−−−→ βq − ω + ε.

Notice that the arrows are in the opposite direction of the ones considered in in-
tegral base because, as can be seen for instance in Example 22, the Euclidean
division that we use for the normalization in integral base do not have analogue
in non-integral base; more precisely, the relation

q′ + ω = βq + ε with ε ∈ {0, 1, . . . , �β� − 1}

may hold for several values of q and ε when q′ and ω are fixed.

In practice we construct at the same time a suitable set of states S′
β,d ⊂ Sβ,d

and the transducer: the set of states S′
β,d is by definition the smallest set S

containing 0 and containing βq − ω + ε, whenever the three reals

q ∈ S, ω ∈ {0, 1, . . . , d− 1}, ε ∈ {0, 1, . . . , �β� − 1}

satisfy the condition βq − ω + ε ∈ (−1, α].

	
��
�� 22� The transducer T when β2 = 3β − 1 and d = 3:

E.g., 3− β = −β2 + 2β + 2 = 1
β belongs to Sβ,d, but does not belong to S′

β,d .
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6.2. How to normalize a sequence (ωi)i∈N?

We first notice that in a non-integral base there do not exist a literal trans-

ducer of normalization. For instance in base β = 1+
√
5

2 , if we normalize from
the left to the right a sequence of the form (01)nx without knowing if the digit
x is 0 or 1, we obtain (01)n0 if x = 0 and 1(00)n if x = 1. So all the terms
of the normalized sequence depend on the value of x, while the successive car-
ries cannot depend on x because x is at the right. As well if we normalize from
the right to the left a sequence of the form 0x(11)n without knowing if the digit
x is 0 or 1, we obtain 0(10)n0 if x = 0 and (10)n01 if x = 1.

���
������� 23� Let (ωi)i∈N ∈ {0, 1, . . . , d − 1}N. The normalized sequence
defined in (44) is the unique β-admissible sequence (εi)i∈Z with

#{i ≤ 0 : εi �= 0} <∞,

which is the output label of a bi-infinite path of input label 0̄ω1ω2ω3 . . .

P r o o f. If (44) holds, the states qi defined by (45) satisfy (46), so (εi)i∈Z is the
output label of a bi-infinite path of input label 0̄ω1ω2ω3 . . .

Conversely, if (εi)i∈Z is β-admissible and is the output label of a bi-infinite
path of input label 0̄ω1ω2ω3 . . . , one has for any i < i′ in Z

qi
βi

=
∑
i<j≤i′

ωj − εj
βj

+
qi′

βi′
(47)

which implies ∑
i∈N

ωi
βi

=
∑
i∈Z

εi
βi

because limi′→+∞
qi′
βi′ = 0 (obvious) and limi→−∞ qi

βi = 0 (for |qi−1| < |qi| when
ωi = εi = 0). �

6.3. The number of redundant representations

For any finite sequence ε1 . . . εk ∈ {0, 1, . . . , d− 1}k we denote by N (ε1 . . . εk)
the number of ω1 . . . ωk ∈ {0, 1, . . . , d− 1}k such that

ω1β
k−1 + · · ·+ ωkβ

0 = ε1β
k−1 + · · ·+ εkβ

0. (48)

Notice that, this time, the carries qi =
∑k
j=i+1

ωj−εj
βj−i do not belong to (−1, α]

but to (−α, α). The transducer T ′ we consider has the same arrows as T , but its
set of states {i0 = 0, i1, . . . , ia} is the smallest set S containing 0 and containing
βq − ω + ε for any q ∈ S, ω ∈ {0, 1, . . . , d− 1}, ε ∈ {0, 1, . . . , �β� − 1} such that
βq − ω + ε ∈ (−α, α).
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���
������� 24� N (ε1 . . . εk) is the number of paths in T ′, from 0 to 0, with
output label ε1 . . . εk. Equivalently,

N (ε1 . . . εk) =
(
1 0 . . . 0

)
Nε1 . . .Nεk

⎛
⎜⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎟⎠ ,

where the (0, 1)-matrices N	 = (n	ij) 0≤i≤a
0≤j≤a

, � ∈ {0, 1, . . . , d− 1} are defined by

n	ij = 1 ⇔ βii − ij + � ∈ {0, 1, . . . , d− 1}.

P r o o f. There exists a path from 0 to 0 with output label ε1 . . . εk, if and
only if (46) holds for some q0 = 0, q1, . . . , qk = 0 in {i0, . . . , ia} and ω1, . . . , ωk
in {0, 1, . . . , d − 1}. This is equivalent to

∑
0<j≤k

ωj−εj
βj = 0, because (46) is

equivalent to qi−1

βi−1 = ωi−εi
βi + qi

βi . �

	
��
�� 25� If β2 = 3β − 1 and d = 3, the transducer T ′ is

6.4. The linear representation of the Bernoulli convolutions
in Pisot base

The Bernoulli convolution [6, 22] in real base β > 1, associated to a positive
probability vector p = (p0, . . . , pd−1), d ≥ β, is the probability measure η = ηβ,p
defined by setting, for any interval I ⊂ R

ηβ,p(I) := Pp

({
(ωk)k∈N : 0 ≤ ωk ≤ d− 1,

∑
k

ωk
βk

∈ I

})
, (49)

where Pp the product probability defined on {0, . . . , d−1}N from the probability
vector p.
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In order to compute the value of ηβ,p on some suitable intervals, we recall the
Parry condition of β-admissibility [15, Theorem 2.3.11].

���������� 26� A sequence (εk)k∈N is β-admissible, i.e., is the Rényi expansion
of a real x ∈ [0, 1), iff ∀k, εkεk+1 · · · ≺ α1α2 . . . for the lexicographical order,
where (αk)k∈N is the quasi-expansion of the unity that can be defined by

1 =
∑
i∈N

αi
βi

and ∀i ≥ 0, 0 <
∑
j>i

αj
βj

≤ 1

βi
.

From now we assume that the Pisot number β has a finite Rényi expansion
[24], or equivalently that (αk)k∈N has a period T .

����� 27� (i) A sequence is in the closure of Admβ (set of the β-admissible
sequences), if and only if it is a infinite concatenation of words belonging to the
set W defined by

w ∈ W ⇔ w = α1 . . . αT or
∃i ∈ {1, . . . , T}, α′

i ∈ {0, . . . , αi − 1}, w = α1 . . . αi−1α
′
i.

(ii) If ε1 . . . εk is a concatenation of words of W, the β-adic interval Iε1...εk ,
i.e., the set of the x ∈ [0, 1) whose Rényi expansion begins by ε1 . . . εk, is simply

Iε1...εk =

[
k∑
i=1

εi
βi
,

k∑
i=1

εi
βi

+
1

βk

)
.

P r o o f. (i) If ε1ε2 · · · ∈ Admβ one has ε1 . . . εT � α1 . . . αT , so there exists
k ≤ T such that

ε1 . . . εk ∈ W and εk+1εk+2 · · · ∈ Admβ .

By iteration, ε1ε2 · · · = w1w2 . . . with ∀i, wi ∈ W.

Conversely suppose that ε1ε2 · · · = w1w2 . . . with ∀i, wi ∈ W. Then for any i
there exists j and a nonempty suffix w′

j of wj such that

εi+1εi+2 · · · = w′
jwj+1 . . .

Clearly, from the definition of W one has wjwj+1 · · · � α1α2 . . . But there exists
k such that wj = α1 . . . αkw

′
j , so one deduce

w′
jwj+1 · · · � αk+1αk+2 · · · � α1α2 . . . ,

proving that ε1ε2 · · · ∈ Admβ .

(ii) If ε1 . . . εk is a concatenation of words of W, from (i) the eventually

periodic sequence ε1 . . . εkα1 . . . αT belongs to Admβ . Denoting by ε1ε2 . . . this

sequence, the closed interval Iε1...εk contains

∞∑
i=1

εi
βi

=

k∑
i=1

εi
βi

+
1

βk
. �
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In order to define the matrices associated to ηβ,p, we consider a set of reals
that may be slightly different from the set S′

β,d defined in Subsection 6.1. Let

{j0 = 0, . . . , ja′} be the smallest set S containing 0 and containing βq − ω + ε,
whenever the three reals q ∈ S, ω ∈ {0, 1, . . . , d − 1}, ε ∈ {0, 1, . . . , �β� − 1}
satisfy the condition βq − ω + ε ∈ (−1, α). The matrices M	 = (m	

ij) 0≤i≤a′
0≤j≤a′

,

� ∈ {0, 1, . . . , �β� − 1}, are defined by

m	
ij =

{
0 if βji − jj + � �∈ {0, 1, . . . , d− 1},
pβji−jj+	 else .

The following theorem gives a linear representation of the Bernoulli convo-
lutions associated to Pisot numbers with finite Rényi expansions. Nevertheless,
Feng [8, Theorem 3.3] gives by an other method a matrix-product characteriza-
tion of Bernoulli convolutions associated with general Pisot numbers.

������� 28� If ε1 . . . εk is a concatenation of words of W, one has for any
i ∈ {0, . . . , a′}

η(ji + Iε1...εk) = EiMε1 . . .MεkC, (50)

where E0, E1, . . . , Ea′ are the canonical basis (a′ + 1)-dimensional row vectors
and C is a suitable positive eigenvector of the irreducible matrix

∑
w∈W Mw.

Consequently, one can define a sofic measure on the symbolic spaceWN by setting

ηi[w1 . . . wk] :=
η(ji + Iw1...wk

)

η(ji + [0, 1))
. (51)

P r o o f. Let Ij =
[∑k

i=j+1
εi
βi−j ,

∑k
i=j+1

εi
βi−j + 1

βk−j

)
for any 0 ≤ j ≤ k;

so one has I0 = Iε1...εk (by Lemma 27 (ii)), Ik = [0, 1) and for any j �= 0,

βIj−1 = εj + Ij .

Assuming by convention that pi = 0 for any i �∈ {0, 1, . . . , d− 1},

η(ji + Ij−1) =

d−1∑
ι=0

P

({
ω1 = ι and

∞∑
k=1

ωk+1

βk
∈ βji + βIj−1 − ι

})

=

d−1∑
ι=0

pιP

({ ∞∑
k=1

ωk+1

βk
∈ βji − ι+ εj + Ij

})

=

a′∑
i′=0

pβji−ji′+εj η (ji′ + Ij)
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so one has ⎛
⎜⎝
η(j0 + Ij−1)

...
η(ja′ + Ij−1)

⎞
⎟⎠ =Mεj

⎛
⎜⎝
η(j0 + Ij)

...
η(ja′ + Ij)

⎞
⎟⎠

and (50) follows by induction, with

C :=

⎛
⎜⎝
η([j0, j0 + 1))

...
η([ja′ , ja′ + 1))

⎞
⎟⎠ . (52)

From Lemma 27 (i) the intervals Iw, w ∈ W, form a partition of [0, 1). De-
noting by Mw the product matrix Mε1 . . .Mεk for any w = ε1 . . . εk one deduce
that the column vector C, defined as in (52), satifies∑

w∈W
MwC = C.

The entries of C are positive because the intervals [ji, ji + 1) intersect the
interior of [0, α) (the support of η). Now

∑
w∈W Mw is irreducible because,

from the definition of {j0, . . . , ja′}, there exists a path from any ji to any ji′ in the

transducer Tη of set of states {j0, . . . , ja′} and arrows q
ω / ε

−−−−−−−−−→ βq−ω+ ε.
�

	
��
�� 29� This is the transducer Tη in the case β = 1+
√
5

2 and d = 2,
the set of states being {j0 = 0, j1 = 1, j2 = β − 1}:

For � ∈ {0, 1} and i, j ∈ {0, 1, 2}, the (i, j)-entry of M	 is pω if ω = βji − jj + �

is an integer, i.e., when there exists an arrow ji
ω / �

−−−−−−−−−→ jj :

M0 =

⎛
⎝p0 0 0

0 0 p1
p1 p0 0

⎞
⎠ and M1 =

⎛
⎝p1 p0 0

0 0 0
0 p1 0

⎞
⎠ .

118



SOFIC MEASURES AND DENSITIES OF LEVEL SETS

We have W = {0, 10}. So we can construct from Tη a new transducer with the
output labels 0 and 10:

We deduce the graph of the Markov chain associated to each of the sofic mea-
sures η0, η1, η2:

and its transition matrix:

(
M0 M10

M0 M10

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

p0 0 0 p0p1 0 p0p1
0 0 p1 0 0 0
p1 p0 0 0 0 p1

2

p0 0 0 p0p1 0 p0p1
0 0 p1 0 0 0
p1 p0 0 0 0 p1

2

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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7. More about the representations in base b = 2
with three digits

Let N (n) be the number of representations, with digits in {0, 1, 2}, of the
integer n. We denote as follows the canonical expansion of n in base 2:

n =
2
1as0as−1 . . . 0a11a0 ,

where a0 ≥ 0 (a0 = 0, if and only if n is even), and a1, . . . , as ≥ 1.

According to [5, Proposition 6.11], N (n) is the denominator qs of the continued
fraction

[0; a1, . . . , as] :=
1

a1 +
1

a2 + · · ·+ 1

as

.

From [11, Theorem 19] there exists α0>0 and S⊂N of natural density 1 such that

lim
n∈S, n→∞

logN (n)

logn
= α0 . (53)

One obtains α0 ≈ 0.56 by computing N by a recurrence relation:

f := proc(n): if n=0 then 1 elif irem(n,2)=0 then f(n/2)+f(n/2-1) else
f(n/2-1/2) end if end proc:

s := seq(log(f(n)), n = 1 .. 16383):

α0:= evalf(sum(s[n], n = 8192 .. 16383)/(8192*log(8192)))

The value of α0 can also be obtained, without recurrence relation, from the
classical formula for the denominators of the continued fractions:

α0 = lim
k→∞

1

2k log(2k)

∑
s,a1,...,as

log

⎛
⎝ ∑
h,i0,...,ih+1

h∏
j=0

aij ,ij+1

⎞
⎠ ,

summing for s, a1, . . . , as ∈ N such that
∑s
i=1 ai ≤ k and for h ∈ {0, . . . , s},

0 = i0 < i1 < · · · < ih < ih+1 = s+ 1, assuming that

as+1 = 1 and ai′,i =

{
ai if i− i′ is an odd positive integer,
0 else.

���
������� 30� The constant α0 defined in (53) is also the Lebesgue-a.e.
value of

lim
s→∞

log qs(x(t))

s log 4
,

where x(t) = [0; a1, a2, . . . ] for any t =
2
0.1a10a21a3 · · · ∈

[
1
2 , 1

)
, and qs(x(t))

is the denominator of both continued fractions [0; a1, . . . , as] and [0; as, . . . , a1].
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P r o o f. From [11, Remark 21], α0 log 2 is the constant γ defined in [13, Theo-

rem 1.1]. Now by [13, Corollary 1.2], log 3
log 2 − α0 is the almost sure value of the

local dimension dloc(t) of the Bernoulli convolution η = η2,3 (in base 2 with three
digits).

In the sequel we denote by 0.1a10a21a3 . . . or by 0.ε1ε2 . . . the expansion of the
real t ∈

[
1
2 , 1

)
in base 2, with ai ∈ N and εi ∈ {0, 1}, and we suppose that εi

is not eventually 0 nor eventually 1. For any k ≥ 1 we put

n(t, k) := ε12
k−1 + · · ·+ εk2

0.

If k = a1 + · · ·+ as for some even integer s, the formula of [5, Proposition 6.11]
gives N

(
n(t, k)

)
= qs

(
x(t)

)
. (54)

By (34),
N

(
n(t, k)

)
+N

(
n(t, k)− 1

)
= 2 · 3kη

(
Iε1...εk

)
. (55)

But for any integer n, N (n − 1) is in a sense close to N (n) because, by [11,
Lemma 9 (ii)], one has

1

C logn
≤ N (n)

N (n− 1)
≤ C logn.

So (54) and (55) imply

lim
s even
s→∞

log qs(x(t))

a1 + · · ·+ as
= lim
k→∞

log(2 · 3kη(Iε1...εk))
k

= log 3− dloc(t) log 2. (56)

Since, from the law of large numbers, a1+· · ·+as is equivalent to 2s for Lebesgue-
a.e. t, (56) implies that, for Lebesgue-a.e. t ∈

[
1
2 , 1

)
,

lim
s→∞

log qs(x(t))

2s log 2
=

log 3

log 2
− dloc(t) = α0.

�
������ 31� Using the matricial expression of the denominators of the con-
tinued fractions, Proposition 30 means that α0 log 2 is the Lyapunov exponent

of the set of matrices

{(
1 0
1 1

)
,

(
1 1
0 1

)}
.

������ 32� The Levy constant

lim
s→∞

log qs(x)

s
=

π2

12 log 2
≈ 1.18657 for Lebesgue-a.e. x ∈ (0, 1) (57)

is larger than the value of

lim
s→∞

log qs(x(t))

s
= α0 log 4 ≈ 0.78 for Lebesgue-a.e. t ∈

[
1

2
, 1

)
. (58)

121



ALAIN THOMAS

On the other side, it is well-known that the partial quotients ai(x) of Lebesgue-
a.e. real x satisfy

lim
s→∞

a1(x) + . . . as(x)

s
= ∞ (59)

For any t such that x(t) satisfies (57) and (59), the l.h.s. in (56) tends to 0,

consequently the local dimension at t is maximal: dloc(t) = log3
log 2 ≈ 1.585.

Since log3
log 2 − α0 ≈ 1.025 and log3

log 2 − log 1+
√

5
2

log 2 ≈ 0.891 (the minimal local dimen-

sion because qs ≤
(
1+

√
5

2

)a1+···+as by induction), the graph of the singularity
spectrum of η2,3 has the following form:

����������������� The work was partially done with Pierre Liardet during
the workshop “Densities and their applications”, Saint-Etienne, June, 15–July,
13, 2013 (http://webperso.univ-st-etienne.fr/∼grekos/2013.html).
We thank De-Jun Feng, Eric Olivier and especially Pierre Liardet who did not
have time to write his contribution to this paper.
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