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USING LOW-DISCREPANCY SEQUENCES
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ABSTRACT. We propose a notion of (t, e, s)-sequences in multiple bases, which

unifies the Halton sequence and (t, s)-sequences under one roof, and obtain an
upper bound of their discrepancy consisting only of the leading term. By using
this upper bound, we improve the tractability results currently known for the
Halton sequence, the Niederreiter sequence, the Sobol’ sequence, and the gener-
alized Faure sequence, and also give tractability results for the Xing-Niederreiter
sequence and the Hofer-Niederreiter sequence, for which no results have been

known so far.

Communicated by Oto Strauch

1. Introduction

Information based complexity (IBC) is one of the most exciting fields in the-
oretical computer science. Since the remarkable success of quasi-Monte Carlo
methods for financial applications in the mid ’90s (see, e.g., [8, 14, 19, 23, 24, 27]),
tractability theory of multivariate problems, a frontier of IBC, quickly emerged
and has been developing in many different directions in the last two decades
[2, 13, 15, 28]. In particular, tractability of multivariate integration using low-
discrepancy sequences, which form a mainstay of quasi-Monte Carlo methods,
has been an important topic and many interesting results were already obtained
(see, e.g., [3, 6, 16, 25, 26]).

The aim of this paper is to improve the currently known tractability re-
sults on low-discrepancy sequences. The key idea for the improvement is briefly
explained by using the case of the Halton sequence. Hickernell and Wang [6]
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proved the strong tractability with the exponent 1 for the Halton sequence un-

der a condition,
∑∞

i=1 γ
1/2
i i log i < ∞, where γ1 ≥ γ2 ≥ · · · ≥ 0 are weights for

the weighted Sobolev space of integrands. Their analysis is based on the upper
bound by Niederreiter [11] for the star discrepancy D∗

s(PN ) of the first N points,
denoted by PN , of the s-dimensional Halton sequence, which is given as

D∗
s(PN ) ≤ 1

N

(
s+

s∏
i=1

(
(pi − 1) logN

2 log pi
+

pi + 1

2

))

=

s∏
i=1

(
pi − 1

2 log pi

)
(logN)s

N
+O

(
(logN)s−1

N

)

for all N > 1, where pi is the ith smallest prime for i = 1, 2, . . . On the other
hand, what happens if we use the upper bound by Halton [5] published more
than half a century ago, which is given as

D∗
s(PN ) ≤

s∏
i=1

(
3pi − 2

log pi

)
(logN)s

N
(1)

for all N > 1? We should notice that Halton’s bound has only the leading
term without any additional terms, while the leading constant is bigger than
that of Niederreiter. According to the prime number theorem, pi = O(i log i),
the right-hand side of (1) is further bounded by N−1

∏s
i=1(C i logN), where C is

a positive constant. In fact, this bound eventually leads us to a weaker condition,∑∞
i=1 γ

1/2
i i < ∞, under which the strong tractability with the exponent 1 holds.

The organization of this paper is as follows. In Section 2, we introduce a gen-
eral concept of (t, e, s)-sequences in multiple bases, which unifies the Halton
sequence and (t, s)-sequences under one roof, and give an upper bound consist-
ing only of the leading term like (1) for the discrepancy of their first N(> 1)
points. This result yields upper bounds for the discrepancies of the Halton se-
quence, of the Niederreiter sequence, of the Sobol’ sequence, of the generalized
Faure sequence, of the Xing-Niederreiter sequence, and of the Hofer-Niederreiter
sequence. In Section 3, based on the discrepancy upper bounds obtained in Sec-
tion 2, we analyze the tractability for finite-order weights using points from
the Halton sequence, the Niederreiter sequence, the Sobol’ sequence, and the
generalized Faure sequence, and improve the exising results. Then, we analyze
the tractability using points from the Xing-Niederreiter sequence and the Hofer-
Niederreiter sequence, for which no results have been known so far, and present
new results for finite-order weights. In the final section, we discuss the tractabil-
ity using points from the Niederreiter-Xing sequence.
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2. (t, e, s)-sequences in multiple bases

First, we introduce the definition of discrepancy [2, 10, 11]. For a point set
PN = {X0, X1, . . . , XN−1} of N points in [0, 1]s and an interval J ⊆ [0, 1]s,
we define AN (J) as the number of n, 0 ≤ n ≤ N − 1, with Xn ∈ J and μ(J) is
the volume of J . Then the star discrepancy of PN is defined by

D∗
s(PN ) = sup

J

∣∣∣∣AN (J)

N
− μ(J)

∣∣∣∣ ,
where the supremum is taken over all intervals J of the form

∏s
i=1[0, αi)

for 0 ≤ αi ≤ 1.

Let b = (b1, . . . , bs) be an integer vector with bi ≥ 2 (1 ≤ i ≤ s). An elemen-
tary interval in multiple bases (b1, . . . , bs) is an interval of the form

Eb(j1, . . . , js) =

s∏
i=1

[
ai

bjii
,
ai + 1

bjii

)
,
(
0 ≤ ai < bjii , ji ≥ 0

)
,

where ai and ji are integers for i = 1, . . . , s.

���������� 1� Let t = (t1, . . . , ts), m = (m1, . . . ,ms), e = (e1, . . . , es) and
j = (j1, . . . , js) be integer vectors, where ti ≥ 0, mi ≥ 0, ei ≥ 1 and ji ≥ 0
for i = 1, . . . , s. Let t and m be vectors with ti ≤ mi (1 ≤ i ≤ s) such
that m − t ∈ M (e) := {(e1j1, . . . , esjs) | ji ≥ 0 (1 ≤ i ≤ s)}. Denote
bm =

∏s
i=1 b

mi
i . A (t,m, e, s)-net in multiple bases (b1, . . . , bs) is a point set

of bm points such that Abm(E) =
∏s

i=1 b
ti
i for every elementary interval E =

Eb(e1j1, . . . , esjs) in multiple bases (b1, . . . , bs) with μ(E) =
∏s

i=1 b
ti−mi
i and j

satisfying (e1j1, . . . , esjs) = m− t.

���������� 2� A (t, e, s)-sequence in multiple bases (b1, . . . , bs) is an infinite
sequence, X = (Xn)n≥0, of points in [0, 1]s such that for all integers � ≥ 0
and all m with mi ≥ ti (1 ≤ i ≤ s) satisfying m − t ∈ M (e), the point set
{[X�bm ]b,m, . . . , [X(�+1)bm−1]b,m} is a (t,m, e, s)-net, where [Xn]b,m means the
mi-digit truncation in base bi of the ith coordinate of a point Xn for 1 ≤ i ≤ s.

It is obvious that a (t, e, s)-sequence in a single base b [20] is identical to a
(t, e, s)-sequence in multiple bases (b1, . . . , bs), where b1 = · · · = bs = b and
t = (t1, . . . , ts) is any tuple satisfying t = t1 + · · ·+ ts.

	�
��
 1� The s-dimensional Halton sequence [5] is a (t, e, s)-sequence in
multiple bases (b1, . . . , bs) such that t = (0, . . . , 0), e = (1, . . . , 1), and bi is the
ith smallest prime for i = 1, . . . , s.
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	�
��
 2� The s-dimensional Niederreiter sequence in base b [11] is a (t, e, s)-
-sequence in multiple bases (b1, . . . , bs) such that t = (0, . . . , 0), e = (e1, . . . , es),
and b1 = · · · = bs = b, where ei, 1 ≤ i ≤ s, is equal to the degree of the ith
polynomial from the list of all monic irreducible polynomials over GF(b) sorted
in nondecreasing order of degree.

	�
��
 3� The s-dimensional Sobol’ sequence [17] is a (t, e, s)-sequence in mul-
tiple bases (b1, . . . , bs) such that t = (0, . . . , 0), e = (e1, . . . , es), and
b1 = · · · = bs = 2, where e1 = 1, and ei, 2 ≤ i ≤ s, is equal to the degree
of the (i−1)-th polynomial from the list of all primitive polynomials over GF(2)
sorted in nondecreasing order of degree.

	�
��
 4� The s-dimensional generalized Faure sequence in base b [18] is a
(t, e, s)-sequence in multiple bases (b1, . . . , bs) such that t = (0, . . . , 0), e =
(1, . . . , 1), and b1 = · · · = bs = b, where b is the smallest prime with b ≥ s.

	�
��
 5� Each of the s-dimensional Xing-Niederreiter sequence in base b
and genus g [29] and the s-dimensional Hofer-Niederreiter sequence in base b
and genus g [7] is a (t, e, s)-sequence in multiple bases (b1, . . . , bs) such that
t = (t1, . . . , ts) is any tuple satisfying g = t1 + · · · + ts, e = (e1, . . . , es), and
b1 = · · · = bs = b, where ei is equal to the degree of the ith place from the list
of all places sorted in nondecreasing order of degree.

Next, we will give a theorem on the upper bound for the discrepancy
of (t, e, s)-sequences in multiple bases (b1, . . . , bs). Before that, we need the fol-
lowing lemmas.

��

� 1� Let (b1, . . . , bs) be an integer vector with bi ≥ 2 (1 ≤ i ≤ s), and
e = (e1, . . . , es) and j = (j1, . . . , js) be integer vectors with ei ≥ 1 and ji ≥ 0
for i = 1, . . . , s. Let I be an interval given by

I =

s∏
i=1

[
ai

beijii

,
ci

beijii

)
,
(
0 ≤ ai < ci ≤ beijii

)
,

where ai and ci are integers for i = 1, . . . , s. Denote B =
∏s

i=1 b
ti
i and

bej =
∏s

i=1 b
eiji
i . Then, for the first N points of the truncated version of a

(t, e, s)-sequence in multiple bases (b1, . . . , bs), we have

|AN (I)−Nμ(I)| ≤ B

s∏
i=1

(ci − ai)

for every positive integer N , and AN (I) ≤ B
∏s

i=1(ci − ai) if N ≤ Bbej, where
the truncation size is taken to be large enough depending on j.
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P r o o f. From Definition 2, for the truncated version of a (t, e, s)-sequence
in multiple bases (b1, . . . , bs), we see that for any integer � ≥ 0,

A�Bbej(I) = �B

s∏
i=1

(ci − ai).

The last statement follows by taking � = 1 and the fact that AN (I) is nonde-
creasing in N . For an arbitrary N , there is � such that �Bbej ≤ N < (�+1)Bbej.
Thus, we have

AN (I)−Nμ(I) ≤ A(�+1)Bbej(I)− �Bbej
s∏

i=1

ci − ai

beijii

= B

s∏
i=1

(ci − ai),

and

Nμ(I)−AN (I) ≤ (�+ 1)Bbej
s∏

i=1

ci − ai

beijii

−A�Bbej(I) = B

s∏
i=1

(ci − ai).

This completes the proof. �

��

� 2� Let b ≥ 4 be an integer. Then, we have xb ≥ bx for 2 ≤ x ≤ b.

P r o o f. Since log x is a concave function, if b ≥ 4 we have

x

b
≤ log x

log b

for 2 ≤ x ≤ b. Thus, the proof is complete. �

��

� 3� Let b1, . . . , bs be integers with 2 ≤ b1 ≤ · · · ≤ bs. Then for any integer
N with 1 < N ≤ bs we have

s∏
i=1

(
(2bi − 1) logbi N

)
> N.

P r o o f. By Lemma 2 and simple calculations for bs = 2 and 3, we have

N2bs−1 > bNs

for bs ≥ 2 and 2 ≤ N ≤ bs. Therefore, (2bs − 1) logbs N > N logbs bs = N .
For i = 1, . . . , s−1, we observe (2bi−1) logbi N ≥ (2bi−1) logbi 2 > logbi bi = 1.
Thus, the proof is complete. �

We now prove the main theorem in this section, whose proof is based on an
excellent exposition by Matoušek [10, pp. 41-43].

27



SHU TEZUKA

������
 1� Let (b1, . . . , bs) be an integer vector with bi ≥ 2 (1 ≤ i ≤ s).
The star discrepancy for the first N points, denoted by PN , of a (t, e, s)-sequence
in multiple bases (b1, . . . , bs) satisfies

ND∗
s(PN ) ≤ B

s∏
i=1

(
2beii − 1

ei log bi

)
(logN)s (2)

for all N > 1, where B =
∏s

i=1 b
ti
i .

P r o o f. Take any z = (z(1), . . . , z(s)) ∈ [0, 1]s. Each z(i) is expanded in base beii
as
∑∞

j=1 a
(i)
j b−eij

i , with 0 ≤ a
(i)
j ≤ beii −1. Let ni = �logbeii N� and define z

(i)
0 = 0

and z
(i)
ni+1 = z(i). Consider the numbers z

(i)
k =

∑k
j=1 a

(i)
j b−eij

i for k = 1, . . . , ni.

Then, we obtain the splitting of J =
∏s

i=1[0, z
(i)) as

I(j) =

s∏
i=1

[
z
(i)
ji
, z

(i)
ji+1

)
,

where j = (j1, . . . , js) with 0 ≤ ji ≤ ni (1 ≤ i ≤ s). For the truncated version
of (t, e, s)-sequences in multiple bases, Lemma 1 gives

∣∣AN

(
I(j)

)−Nμ
(
I(j)

)∣∣ ≤ B

s∏
i=1

(beii − 1)

for all j with 0 ≤ ji < ni (1 ≤ i ≤ s). Denote the remaining intervals by

Rh =
⋃

j∈Jh

I(j),

for h = 1, . . . , s, where Jh = {(j1, . . . , js)| 0 ≤ ji ≤ ni (1 ≤ i 	= h ≤ s) and
jh = nh}. Since μ(Rh) ≤ b−ehnh

h ≤ 1/N and Rh contains at most B points,
we have

|AN (Rh)−Nμ(Rh)| ≤ B

for h = 1, . . . , s. Therefore,

|AN (J)−Nμ(J)| ≤ B

s∏
i=1

(beii − 1)×
s∏

i=1

⌈
logbeii

N
⌉
+Bs (3)

for any J . Since the right-hand side is independent of the interval J , it is an upper
bound of ND∗

s(PN ) = supJ |AN (J)−Nμ(J)|.
Assuming that N ≥ max1≤i≤s b

ei
i , we can further bound the right-hand side

of (3) from above as follows:
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ND∗
s(PN ) ≤ B

(
s∏

i=1

((
beii − 1

)(
logbeii

N + 1
))

+ s

)

≤ B

(
s∏

i=1

(
2
(
beii − 1

)
logbeii

N
)
+ s

)

≤ B

s∏
i=1

((
2beii − 2

)
logbeii N + 1

)

≤ B

s∏
i=1

((
2beii − 1

)
logbeii

N
)
.

In fact, this upper bound holds for all N > 1, because, from Lemma 3, it is
bigger than N

(≥ ND∗
s(PN )

)
for all N with 1 < N ≤ max1≤i≤s b

ei
i .

Hence, the discrepancy bound (2) for the truncated version is obtained.
As shown in [20], the discrepancy bound for the untruncated version remains
the same as the truncated version. Thus, the proof is complete. �

If the discrepancy is analyzed based on Atanassov’s signed splitting method [1],
we obtain

ND∗
s(PN) ≤ B

s!

s∏
i=1

(
beii − 1

2ei log bi

)
(logN)s +O((logN)s−1)

for all N > 1 [21]. (The proof is a simple generalization of the one given in [22]
for (t, e, s)-sequences in a single base b.) Although the leading constant becomes
smaller than the one in Theorem 1, it looks difficult to apply this upper bound
to the tractability analysis to obtain better results.

Based on the above theorem, we can derive the following corollaries for the
four types of low-discrepancy sequences.

��������� 1� Let PN be the first N points of the s-dimensional Halton se-
quence. Let Pu

N be the projection of PN on the lower dimensional space [0, 1]|u|.
Then for any nonempty subset u ⊆ {1, . . . , s}, the star discrepancy of Pu

N satis-
fies

D∗
|u|(P

u
N ) ≤ 1

N

∏
i∈u

(C i logN)

for all N > 1, where C = 6.

P r o o f. From Remark 1 and Theorem 1, we have

ND∗
|u|(P

u
N ) ≤

∏
i∈u

(
2bi − 1

log bi
logN

)
(4)

for all N > 1, where bi is the ith smallest prime for i = 1, . . . , s.
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Since bi/ log bi < 3 i for i = 1, 2, . . . (see, e.g., Dusart [4]), the right-hand side
of (4) is further bounded from above by∏

i∈u

(6 i logN) .

Thus, the proof is complete. �
��������� 2� Let PN be the first N points of the s-dimensional Niederreiter
sequence in base b. Let Pu

N be the projection of PN on the lower dimensional

space [0, 1]|u|. Then for any nonempty subset u ⊆ {1, . . . , s}, the star discrepancy
of Pu

N satisfies
D∗

|u|(P
u
N ) ≤ 1

N

∏
i∈u

(C i logN)

for all N > 1, where C = 4b2/ log b.

P r o o f. From Remark 2 and Theorem 1, we have

ND∗
|u|(P

u
N ) ≤

∏
i∈u

(
2bei − 1

ei log b
logN

)
(5)

for all N > 1, where ei, 1 ≤ i ≤ s, is equal to the degree of the ith polynomial
from the list of all monic irreducible polynomials over GF(b) sorted in nonde-
creasing order of degree.

According to Niederreiter [11], we have

ei ≤ logb i+ logb logb(i+ b) + 2.

Thus, the right-hand side of (5) is bounded from above by∏
i∈u

(
2b2i logb(i+ b)

ei log b
logN

)
.

Since logb(i+ b) ≤ 2ei for i = 1, 2, . . . , we can further bound it by∏
i∈u

(
4b2i

log b
logN

)
.

Thus, the proof is complete. �
��������� 3� Let PN be the first N points of the s-dimensional Sobol’ se-
quence. Let Pu

N be the projection of PN on the lower dimensional space [0, 1]|u|.
Then for any nonempty subset u ⊆ {1, . . . , s}, the star discrepancy of Pu

N satis-
fies

D∗
|u|(P

u
N ) ≤ 1

N

∏
i∈u

(
C i log2 log2(i+ 3) logN

)
for all N > 1, where C > 1 is a constant.
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P r o o f. From Remark 3 and Theorem 1, we have

ND∗
|u|(P

u
N ) ≤

∏
i∈u

(
2ei+1 − 1

ei log 2
logN

)
(6)

for all N > 1, where e1 = 1, and ei, 2 ≤ i ≤ s, is equal to the degree of the
(i−1)th polynomial from the list of all primitive polynomials over GF(2) sorted
in nondecreasing order of degree.

According to Sobol’[17], we have

ei ≤ log2 i+ log2 log2(i+ 1) + log2 log2 log2(i+ 3) + c

for i = 1, 2, . . . , where c is a positive constant independent of i.

Thus, the right-hand side of (6) is bounded from above by∏
i∈u

(
2c+1i log2(i+ 1) log2 log2(i+ 3)

ei log 2
logN

)
.

Since log2(i+ 1) < 2ei for i = 1, 2, . . . , we can further bound it by∏
i∈u

(
2c+2

log 2
i log2 log2(i+ 3) logN

)
.

Thus, the proof is complete. �

��������� 4� Let PN be the first N points of the s-dimensional generalized
Faure sequence in base b. Let Pu

N be the projection of PN on the lower dimen-

sional space [0, 1]|u|. Then for any nonempty subset u ⊆ {1, . . . , s}, the star
discrepancy of Pu

N satisfies

D∗
|u|(P

u
N ) ≤ 1

N

(
C

s logN

log s

)|u|

for all N > 1 and s > 1, where C = 4.

P r o o f. From Remark 4 and Theorem 1, we have

ND∗
|u|(P

u
N ) ≤

(
2b− 1

log b
logN

)|u|
(7)

for all N > 1, where b is the smallest prime with b ≥ s.

According to the Bertrand postulate, s ≤ b ≤ 2s, the right-hand side of (7)
is bounded from above by (

4s logN

log s

)|u|
.

Thus, the proof is complete. �
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��������� 5� Let PN be the first N points of the s-dimensional Xing-Nieder-
reiter sequence in base b and genus g or of the s-dimensional Hofer-Niederreiter
sequence in base b and genus g. Let Pu

N be the projection of PN on the lower

dimensional space [0, 1]|u|. Then for any nonempty subset u ⊆ {1, . . . , s}, the star
discrepancy of Pu

N satisfies

D∗
|u|(P

u
N ) ≤ bg

N

∏
i∈u

(C i logN)

for all N > 1, where C > 1 is a constant.

P r o o f. From Remark 5 and Theorem 1, we have

ND∗
|u|(P

u
N ) ≤ bg

∏
i∈u

(
2bei − 1

ei log b
logN

)
(8)

for all N > 1, where ei, 1 ≤ i ≤ s, is equal to the degree of the ith place from
the list of all places sorted in nondecreasing order of degree. According to the
prime number theorem for global function fields [9]:

#(e) =
b

b− 1
· b

e

e
+ o

(
be

e

)
as e → ∞, (9)

where #(e), e = 1, 2, . . . , is the number of places of degree ≤ e, we can further
bound (8) by

bg
∏
i∈u

(C i logN) ,

because #(ei − 1) < i ≤ #(ei) for i = 1, 2, . . . Thus, the proof is complete.
Notice that the theorem (9) holds independently of the genus g. �

3. Tractability analysis of several low-discrepancy
sequences

In this section, we apply the results obtained in the preceding section to the
tractability analysis for finite-order weights, of the Halton sequence, of the
Niederreiter sequence, of the Sobol’ sequence, of the generalized Faure sequence,
of the Xing-Niederreiter sequence, and of thel Hofer-Niederreiter sequence. First,
we define the worst case integration error by

e(PN ;H) = sup
||f ||H≤1

∣∣∣∣∣
∫
[0,1]s

f(x)dx− 1

N

N−1∑
i=0

f(Xi)

∣∣∣∣∣ ,
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where PN = {X0, X1, . . . , XN−1} is a set of N points in [0, 1]s and H denotes
a normed space of integrands f(x). We denote the initial error, which indi-
cates the error when PN is empty, by e(0;H). In this section, we consider two
types of spaces. One is the anchored Sobolev space with an arbitrary anchor
a = (a1, . . . , as) ∈ [0, 1]s, and the other is the unanchored Sobolev space.
For more detailed background and theoretical properties of these spaces, con-
sult the blue book by Novak and Woźniakowski [13]. As in [13], we say that
the weights γ = {γs,u} are finite-order if there exists an integer ω such that
γs,u = 0 for all s and for all u with |u| > ω, and say that the order is ω∗ if ω∗ is
the smallest integer with this property, where we define γs,∅ = 1. Hereafter, we
denote the anchored Sobolev space by H(Ks,γ,A), and the unanchored Sobolev
space by H(Ks,γ,B), and let H(Ks,γ) be H(Ks,γ,A) or H(Ks,γ,B).

3.1. Strong tractability of the Halton sequence

First, we give the following lemma.

��

� 4� Let PN be the point set consisting of the first N points of the
s-dimensional Halton sequence. Then

e2
(
PN ;H(Ks,γ)

) ≤ 1

N2

∑
∅�=u⊆{1,...,s}

γs,u
∏
i∈u

(C1 i log2 N)2

for all N > 1, where C1 = 12 log 2.

P r o o f. According to Theorem 16.27 and its proof in [13], we have

e2
(
PN ;H(Ks,γ)

) ≤ ∑
∅�=u⊆{1,...,s}

γs,u
(
2|u|D∗

|u|(P
u
N )
)2

(10)

for both anchored and unanchored Sobolev spaces. Applying Corollary 1 com-
pletes the proof. �

Then, we obtain the main theorem on the tractability using the Halton
sequence. Although the proof is almost the same as that of Theorem 16.28
of [13], it is added for the reader’s convenience and for completeness. We de-
fine mi = a2i − ai + 1/3 for i = 1, . . . , s.

������
 2� Let PN be the point set of the first N points of the s-dimensional
Halton sequence, where N > 1.

(A) Consider the anchored Sobolev space H(Ks,γ,A) with an arbitrary an-
chor a.

33



SHU TEZUKA

• For arbitrary finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ C2 sω logω2 N

N
,

where C2 is a positive constant independent of N and s.

• If the finite-order weights {γs,u} of order ω satisfy

M := sup
s∈N

( ∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈u i

2∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈umi

)
< ∞, (11)

then for arbitrary δ > 0 there exists a positive constant Cδ independent
of N and s such that

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ CδN
−1+δ.

(B) Consider the unanchored Sobolev space H(Ks,γ,B).

• For arbitrary bounded finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,B)

) ≤ C3 s3ω/2 logω2 N

N
,

where C3 is a positive constant independent of N and s.

• If the finite-order weights {γs,u} of order ω satisfy

M ′ := sup
s∈N

⎛
⎝ ∑

u⊆{1,...,s},|u|≤ω

γs,u
∏
i∈u

i2

⎞
⎠ < ∞, (12)

then for arbitrary δ > 0 there exists a positive constant C′
δ independent

of N and s such that

e
(
PN ;H(Ks,γ,B)

) ≤ C′
δN

−1+δ.

P r o o f. According to Lemma 4, we have the worst case error as

e2
(
PN ;H(Ks,γ,A)

) ≤ 1

N2

∑
u⊆{1,...,s},0<|u|≤ω

γs,u
∏
i∈u

(C1i log2N)2

=
1

N2

ω∑
�=1

⎛
⎝(C1 log2N)2�

∑
u⊆{1,...,s},|u|=�

γs,u
∏
i∈u

i2

⎞
⎠ .

For the anchored case (A), the initial error is given as

e2
(
0;H(Kd,γ,A)

)
=

∑
u⊆{1,...,s},|u|≤ω

γs,u
∏
i∈u

mi.
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First, we consider arbitrary finite-order weights of order ω. Since 1/12 ≤ mi ≤
1/3 for all i = 1, . . . , s, and from Lemma 4, we have

e2
(
PN ;H(Ks,γ,A)

)
e2
(
0;H(Ks,γ,A)

) ≤ 1

N2

∑
u⊆{1,...,s},0<|u|≤ω γs,u

∏
i∈u(C1i log2N)2∑

u⊆{1,...,s},0≤|u|≤ω γs,u
∏

i∈u mi
,

≤ 12ω

N2

∑
u⊆{1,...,s},0<|u|≤ω γs,u

∏
i∈u(C1i log2N)2∑

u⊆{1,...,s},0≤|u|≤ω γs,u
,

≤ 12ω

N2
max

u:|u|≤ω

∏
i∈u

(C1i log2N)2,

≤ 12ω(C1s log2 N)2ω

N2
=

C2
2s

2ω log2ω2 N

N2
,

where C2 = 2ω
√
3ωCω

1 .

Now consider finite-order weights of order ω satisfying (11). For arbitrary
δ > 0 define

Bδ = max
1≤�≤ω

((
C1

2δ log 2

)2�
(2�)!

)
.

Then, we have

e2
(
PN ;H(Ks,γ,A)

)
e2
(
0;H(Ks,γ,A)

) ≤ 1

N2

ω∑
�=1

(
(C1 log2 N)2�

∑
u⊆{1,...,s},|u|=� γs,u

∏
i∈u i

2∑
u⊆{1,...,s},0≤|u|≤ω γs,u

∏
i∈u mi

)

≤ M

N2

ω∑
�=1

(
C1 logN

log 2

)2�

≤ BδM

N2

ω∑
�=1

(2δ logN)2�

(2�)!

≤ BδM

N2
exp(2δ logN) = C2

δN
−2+2δ,

where Cδ =
√
BδM . This completes the proof for the case (A).

For the unanchored case (B), in which the initial error e
(
0;H(Kd,γ,B)

)
= 1,

let Γ∗ satisfy γs,u ≤ Γ∗ for all s and for all u ⊆ {1, . . . , s}. Then, we have

e2
(
PN ;H(Ks,γ,B)

) ≤ Γ∗

N2

ω∑
�=1

⎛
⎝(C1 log2 N)2�

∑
u⊆{1,...,s},|u|=�

∏
i∈u

i2

⎞
⎠

≤ Γ∗

N2

ω∑
�=1

⎛
⎝s2�(C1 log2 N)2�

∑
u⊆{1,...,s},|u|=�

1

⎞
⎠
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≤ Γ∗s2ω(C1 log2 N)2ω

N2

ω∑
�=1

(
s

�

)

≤ Γ∗s3ω(C1 log2 N)2ω

N2
=

C2
3s

3ω log2ω2 N

N2
,

where C3 =
√
Γ∗Cω

1 . Note that
∑ω

�=1

(
s
�

) ≤∑ω
�=1

s�

� ≤ sω for 1 ≤ ω ≤ s.

For the second part of (B), under the condition (12) we have

e2
(
PN ;H(Ks,γ,B)

) ≤ 1

N2

ω∑
�=1

⎛
⎝(C1 log2 N)2�

∑
u⊆{1,...,s},|u|=�

γs,u
∏
i∈u

i2

⎞
⎠

≤ M ′

N2

ω∑
�=1

(
C1 logN

log 2

)2�

≤ C′2
δ N−2+2δ,

where C′
δ =

√
BδM ′. Thus, the proof for the case (B) is complete. �

3.2. Strong tractability of the Niederreiter sequence

We prove the next lemma.

��

� 5� Let PN be the point set consisting of the first N points of the
s-dimensional Niederreiter sequence in base b. Then

e2
(
PN ;H(Ks,γ)

) ≤ 1

N2

∑
∅�=u⊆{1,...,s}

γs,u
∏
i∈u

(C1 i log2N)2

for all N > 1, where C1 = 8b2

log2 b > 1 is a constant independent of N and s.

P r o o f. As in the proof of Lemma 4, applying Corollary 2 to (10) completes
the proof. �

Now we obtain the main theorem on the tractability using the Niederreiter
sequence.

������
 3� Let PN be the point set of the first N points of the s-dimensional
Niederreiter sequence in base b, where N > 1.

(A) Consider the anchored Sobolev space H(Ks,γ,A) with an arbitrary an-
chor a.

• For arbitrary finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ C2 sω logω2 N

N
,

where C2 is a positive constant independent of N and s.
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• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

( ∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈u i

2∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈u mi

)
< ∞,

then for arbitrary δ > 0 there exists a positive constant Cδ independent
of N and s such that

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ CδN
−1+δ.

(B) Consider the unanchored Sobolev space H(Ks,γ,B).

• For arbitrary bounded finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,B)

) ≤ C3 s3ω/2 logω2 N

N
,

where C3 is a positive constant independent of N and s.

• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

⎛
⎝ ∑

u⊆{1,...,s},|u|≤ω

γs,u
∏
i∈u

i2

⎞
⎠ < ∞,

then for arbitrary δ > 0 there exists a positive constant C′
δ independent

of N and s such that

e
(
PN ;H(Ks,γ,B)

) ≤ C′
δN

−1+δ.

P r o o f. Based on Lemma 5, the proof is done in the same way as that of The-
orem 2. �

3.3. Strong tractability of the Sobol’ sequence

We show the next lemma.

��

� 6� Let PN be the point set consisting of the first N points of the
s-dimensional Sobol’ sequence. Then

e2
(
PN ;H(Ks,γ)

) ≤ 1

N2

∑
∅�=u⊆{1,...,s}

γs,u
∏
i∈u

(
C1 i log2 log2(i+ 3) log2 N

)2
for all N > 1, where C1 > 1 is a constant independent of N and s.

P r o o f. As in the proof of Lemma 4, applying Corollary 3 to (10) completes
the proof. �

Now we obtain the main theorem on the tractability using the Sobol’ sequence.
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������
 4� Let PN be the point set of the first N points of the s-dimensional
Sobol’ sequence, where N > 1.

(A) Consider the anchored Sobolev space H(Ks,γ,A) with an arbitrary an-
chor a.

• For arbitrary finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ C2

(
s log2 log2(s+ 3)

)ω
logω2 N

N
,

where C2 is a positive constant independent of N and s.

• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

⎛
⎝∑u⊆{1,...,s},|u|≤ω γs,u

∏
i∈u

(
i log2 log2(i+ 3)

)2∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈u mi

⎞
⎠ < ∞,

then for arbitrary δ > 0 there exists a positive constant Cδ independent
of N and s such that

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ CδN
−1+δ.

(B) Consider the unanchored Sobolev space H(Ks,γ,B).

• For arbitrary bounded finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,B)

) ≤ C3

(
s3/2 log2 log2(s+ 3)

)ω
logω2 N

N
,

where C3 is a positive constant independent of N and s.

• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

⎛
⎝ ∑

u⊆{1,...,s},|u|≤ω

γs,u
∏
i∈u

(
i log2 log2(i+ 3)

)2⎞⎠ < ∞,

then for arbitrary δ > 0 there exists a positive constant C′
δ independent

of N and s such that

e
(
PN ;H(Ks,γ,B)

) ≤ C′
δN

−1+δ.

P r o o f. Based on Lemma 6, the proof is done in the same way as that of The-
orem 2. �
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3.4. Strong tractability of the generalized Faure sequence

We present the next lemma.

��

� 7� Let PN be the point set consisting of the first N points of the s-
-dimensional generalized Faure sequence in base b. Then

e2
(
PN ;H(Ks,γ)

) ≤ 1

N2

∑
∅�=u⊆{1,...,s}

γs,u

(
C1

s log2N

log2 s

)2|u|

for all N > 1 and s > 1, where C1 = 8.

P r o o f. As in the proof of Lemma 4, applying Corollary 4 to (10) completes
the proof. �

We now prove the main theorem on the tractability using the generalized
Faure sequence.

������
 5� Let PN be the point set of the first N points of the s-dimensional
generalized Faure sequence in base b, where N > 1 and s > 1.

(A) Consider the anchored Sobolev space H(Ks,γ,A) with an arbitrary an-
chor a.

• For arbitrary finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ C2 sω logω2 N

(logω2 s)N
,

where C2 is a positive constant independent of N and s.

• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

(∑
u⊆{1,...,s},|u|≤ω γs,u(s/ log2 s)

2|u|∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈umi

)
< ∞, (13)

then for arbitrary δ > 0 there exists a positive constant Cδ independent
of N and s such that

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ CδN
−1+δ.

(B) Consider the unanchored Sobolev space H(Ks,γ,B).

• For arbitrary bounded finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,B)

) ≤ C3 s3ω/2 logω2 N

(logω2 s)N
,

where C3 is a positive constant independent of N and s.
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• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

⎛
⎝ ∑

u⊆{1,...,s},|u|≤ω

γs,u(s/ log2 s)
2|u|

⎞
⎠ < ∞, (14)

then for arbitrary δ > 0 there exists a positive constant C′
δ independent

of N and s such that

e
(
PN ;H(Ks,γ,B)

) ≤ C′
δN

−1+δ.

P r o o f. Based on Lemma 7, the proof is done in the same way as that of The-
orem 2. �

3.5. Strong tractability of the Xing-Niederreiter sequence and the
Hofer-Niederreiter sequence

We show the next lemma.

��

� 8� Let PN be the point set consisting of the first N points of the
s-dimensional Xing-Niederreiter sequence in base b and genus g or of the
s-dimensional Hofer-Niederreiter sequence in base b and genus g. Then

e2
(
PN ;H(Ks,γ)

) ≤ b2g

N2

∑
∅�=u⊆{1,...,s}

γs,u
∏
i∈u

(C1 i log2 N)2

for all N > 1, where C1 > 1 is a constant independent of N and s.

P r o o f. As in the proof of Lemma 4, applying Corollary 5 to (10) completes
the proof. �

Now we obtain the main theorem on the tractability using the Xing-Nieder-
reiter sequence or the Hofer-Niederreiter sequence.

������
 6� Let PN be the point set of the first N points of the s-dimensional
Xing-Niederreiter sequence in base b and genus g or of the s-dimensional Hofer-
Niederreiter sequence in base b and genus g, where N > 1.

(A) Consider the anchored Sobolev space H(Ks,γ,A) with an arbitrary an-
chor a.

• For arbitrary finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ C2 sω logω2 N

N
,

where C2 is a positive constant independent of N and s.
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• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

( ∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈u i

2∑
u⊆{1,...,s},|u|≤ω γs,u

∏
i∈umi

)
< ∞, (15)

then for arbitrary δ > 0 there exists a positive constant Cδ independent
of N and s such that

e
(
PN ;H(Ks,γ,A)

)
e
(
0;H(Ks,γ,A)

) ≤ CδN
−1+δ.

(B) Consider the unanchored Sobolev space H(Ks,γ,B).

• For arbitrary bounded finite-order weights {γs,u} of order ω, we have

e
(
PN ;H(Ks,γ,B)

) ≤ C3 s3ω/2 logω2 N

N
,

where C3 is a positive constant independent of N and s.

• If the finite-order weights {γs,u} of order ω satisfy

sup
s∈N

⎛
⎝ ∑

u⊆{1,...,s},|u|≤ω

γs,u
∏
i∈u

i2

⎞
⎠ < ∞, (16)

then for arbitrary δ > 0 there exists a positive constant C′
δ independent

of N and s such that

e
(
PN ;H(Ks,γ,B)

) ≤ C′
δN

−1+δ.

P r o o f. Based on Lemma 8, the proof is done in the same way as that of The-
orem 2. �

4. Discussion

According to [7], the s-dimensional Niederreiter-Xing sequence in base b and
genus g [12], in which only rational places are used and thereby global function
fields of different genera g are employed for different dimensions s, is a (t, e, s)-
-sequence in a single base b such that t = g and e1 = · · · = es = 1. It is an
open problem to determine the tractability using points from the Niederreiter-
-Xing sequence. Although we know that t = g = O(s), this property makes
the problem intractable, because an upper bound for the worst case error must
contain a multiplicative factor bO(s), since the t-value of any lower dimensional

projection P
|u|
N remains the same, i.e., t = g.
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[8] JÄCKEL, P.: Monte Carlo Methods in Finance, John Wiley and Sons, 2002.
[9] KRUSE, M.—STICHTENOTH, H.: Ein Analogon zum Primzahlsatz für algebraische

Funktionenkörper, Manuscripta Mathematica, 69 (1990), 219–221.
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