ON A GOLAY-SHAPIRO-LIKE SEQUENCE

Jean-Paul Allouche
Dedicated to the memory of Pierre Liardet

Abstract

A recent paper by P. Lafrance, N. Rampersad, and R. Yee studies the sequence of occurrences of 10 as a scattered subsequence in the binary expansion of integers. They prove in particular that the summatory function of this sequence has the "root N " property, analogously to the summatory function of the Golay-Shapiro sequence. We prove here that the root N property does not hold if we twist the sequence by powers of a complex number of modulus one, hence showing a fundamental difference with the Golay-Shapiro sequence.

Communicated by Reinhard Winkler

1. Introduction

In the paper [7] the authors study a sequence $\left(i_{n}\right)_{n \geq 0}$ involving the number $i n v_{2}(n)$ of inversions in the binary expansion of the integer n, i.e., the number of occurrences of 10 as a scattered subsequence of the binary representation of the integer n. More precisely, defining $i_{n}:=(-1)^{i n v_{2}(n)}$ they prove in particular the following result.

Theorem 1 (Theorem 2 in [7). There exists a bounded, continuous, nowhere differentiable, 1-periodic function G such that

$$
S(N):=\sum_{0 \leq n \leq N} i_{n}=\sqrt{N} G\left(\log _{4} N\right)
$$

This shows that the behavior of the summatory function of sequence $\left(i_{n}\right)_{n \geq 0}$ is quite similar to the behavior of the summatory function of the Golay-Shapiro sequence (see [4, 3]). Recall that the ± 1 Golay-Shapiro sequence $\left(a_{n}\right)_{n \geq 0}$ is

[^0]defined by $a_{n}=(-1)^{w_{n}}$, where w_{n} counts the number of possibly overlapping 11's in the binary expansion of the integer n. This sequence can also be defined by $a_{0}=1$, and for all $n \geq 0$, the recurrence relations $a_{2 n}=a_{n}$ and $a_{2 n+1}=(-1)^{n} a_{n}$ (see [2]). It is then natural to ask, as the authors of [7] do, whether the sequence $\left(i_{n}\right)_{n \geq 0}$ satisfies the fundamental "root N " property of the Golay-Shapiro sequence, namely
$$
\sup _{\theta \in \mathbb{R}}\left|\sum_{0 \leq n \leq N} a_{n} e^{2 i \pi n \theta}\right|=O(\sqrt{N}) .
$$

This question is furthermore justified not only by the fact that $\left(a_{n}\right)_{n \geq 0}$ admits a "digital" representation as $\left(i_{n}\right)_{n \geq 0}$ does (namely $a_{n}=(-1)^{u_{n}}$, where u_{n} is the number of possibly overlapping 11's in the binary expansion of n), but also by the fact that many other "digital" sequences have the root N property (see [1]). The purpose of this paper is to prove that the sequence $\left(i_{n}\right)_{n \geq 0}$ does not satisfy the root N property.

Remark 1. The Golay-Shapiro sequence is also called the Rudin-Shapiro or the Shapiro-Rudin sequence. Since Rudin [8, p. 855] acknowledges Shapiro's priority of (9), and since [9] and [6] appeared the same year, the sequence should indeed be called the "Golay-Shapiro sequence". Note that the fact that this sequence appears in a somewhat disguised form in the paper of Golay [6] can be found in the article of Brillhart and Morton [5] where they write that Odlyzko pointed out to them [6, bottom of p. 469].

2. Preliminary results

First we recall a property of sequence $\left(i_{n}\right)_{n \geq 0}$ given in [7.
Proposition 1 (Proposition 1 of [7). The sequence $\left(i_{n}\right)_{n \geq 0}$ satisfies $i_{0}=1$ and the following recurrence relations: for all $n \geq 0$,

$$
i_{2 n+1}=i_{n}, \quad i_{4 n}=i_{n}, \quad i_{4 n+2}=-i_{2 n} .
$$

This proposition implies the following result on the summatory function of $\left(i_{n} z^{n}\right)_{n \geq 0}$.

Proposition 2. Let z be a complex number. Define the sum $T(N, z)$ by

$$
T(N, z):=\sum_{0 \leq n \leq 2^{N}-1} z^{n}\binom{i_{n}}{i_{2 n}}
$$

ON A GOLAY-SHAPIRO-LIKE SEQUENCE

Then we have

$$
T(N+1, z)=\left(\begin{array}{cc}
z & 1 \\
1 & -z
\end{array}\right) T\left(N, z^{2}\right)
$$

Proof. Separating even and odd indices in $T(N+1, z)$ and using Proposition 1 yields

$$
\begin{aligned}
T(N+1, z) & =\sum_{0 \leq 2 n \leq 2^{N+1}-1} z^{2 n}\binom{i_{2 n}}{i_{4 n}}+\sum_{0 \leq 2 n+1 \leq 2^{N+1}-1} z^{2 n+1}\binom{i_{2 n+1}}{i_{4 n+2}} \\
& =\sum_{0 \leq n \leq 2^{N}-1} z^{2 n}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{i_{n}}{i_{2 n}}+\sum_{0 \leq n \leq 2^{N}-1} z^{2 n+1}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{i_{n}}{i_{2 n}} \\
& =\left(\begin{array}{cc}
z & 1 \\
1 & -z
\end{array}\right) T\left(N, z^{2}\right) .
\end{aligned}
$$

It happens that a single common transformation gives a simpler form for all matrices

$$
\left(\begin{array}{cc}
z & 1 \\
1 & -z
\end{array}\right) .
$$

Proposition 3. Let i be a square root of -1 and P be the matrix defined by

Then

$$
P:=\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) .
$$

$$
P^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right) \quad \text { and } \quad P^{-1}\left(\begin{array}{cc}
z & 1 \\
1 & -z
\end{array}\right) P=\left(\begin{array}{cc}
0 & z-i \\
z+i & 0
\end{array}\right) .
$$

Proof. Straightforward.
Proposition 4. Let $M(z)=\left(\begin{array}{cc}z & 1 \\ 1 & -z\end{array}\right)$. Then we have

$$
\sum_{0 \leq n \leq 2^{2 N}-1} i_{n} z^{n}=\frac{1}{2}\left(c_{N}(1-i)+d_{N}(1+i)\right)
$$

where

$$
c_{N}=\prod_{0 \leq k \leq N-1}\left(z^{4^{k}}-i\right)\left(z^{2.4^{k}}+i\right) \quad \text { and } \quad d_{N}=\prod_{0 \leq k \leq N-1}\left(z^{4^{k}}+i\right)\left(z^{2.4^{k}}-i\right) .
$$

Proof. Using Proposition 2 we have

$$
T(N+1, z)=M(z) T\left(N, z^{2}\right)=M(z) M\left(z^{2}\right) T\left(N-1, z^{4}\right)=\cdots
$$

hence, starting from $T(N, z)$ yields

$$
T(N, z)=M(z) M\left(z^{2}\right) \cdots M\left(z^{2^{N-1}}\right) T\left(0, z^{2^{N}}\right)
$$

Replacing N by $2 N$, defining $\widetilde{M}(z):=\left(\begin{array}{cc}0 & z-i \\ z+i & 0\end{array}\right)$, and using Proposition 3 gives

$$
\begin{aligned}
T(2 N, z) & =\left(P \widetilde{M}(z) P^{-1}\right) \cdots\left(P \widetilde{M}\left(z^{2^{2 N-1}}\right) P^{-1}\right) T\left(0, z^{2^{2 N}}\right) \\
& =P \widetilde{M}(z) \cdots \widetilde{M}\left(z^{2^{2 N-1}}\right) P^{-1} T\left(0, z^{2^{2 N}}\right) \\
& =P\left(\begin{array}{cc}
0 & z-i \\
z+i & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & z^{2^{2 N-1}}-i \\
z^{22^{2 N-1}}+i & 0
\end{array}\right) P^{-1} T\left(0, z^{2^{2 N}}\right) .
\end{aligned}
$$

Grouping the matrices in the last equality pairwise and noting that

$$
\left(\begin{array}{cc}
0 & z-i \\
z+i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & z^{2}-i \\
z^{2}+i & 0
\end{array}\right)=\left(\begin{array}{cc}
(z-i)\left(z^{2}+i\right) & 0 \\
0 & (z+i)\left(z^{2}-i\right)
\end{array}\right)
$$

we obtain

$$
T(2 N, z)=P\left(\begin{array}{cc}
c_{N} & 0 \tag{1}\\
0 & d_{N}
\end{array}\right) P^{-1} T\left(0, z^{2^{2 N}}\right)
$$

with

$$
c_{N}=\prod_{0 \leq k \leq N-1}\left(z^{4^{k}}-i\right)\left(z^{2.4^{k}}+i\right)
$$

and

$$
\begin{equation*}
d_{N}=\prod_{0 \leq k \leq N-1}\left(z^{4^{k}}+i\right)\left(z^{2.4^{k}}-i\right) \tag{2}
\end{equation*}
$$

Since for any complex number Z we have

$$
T(0, Z)=Z^{0}\binom{i_{0}}{i_{0}}=\binom{1}{1}
$$

Equality (1) can be rewritten as

$$
\begin{equation*}
T(2 N, z)=\frac{1}{2}\binom{c_{N}(1-i)+d_{N}(1+i)}{c_{N}(1+i)+d_{N}(1-i)} \tag{3}
\end{equation*}
$$

So that we have

$$
\sum_{0 \leq n \leq 2^{2 N}-1} i_{n} z^{n}=\frac{1}{2}\left(c_{N}(1-i)+d_{N}(1+i)\right) .
$$

ON A GOLAY-SHAPIRO-LIKE SEQUENCE

3. The main result

Now we state and prove our main theorem.
Theorem 2. Define $j:=e^{2 i \pi / 3}$. Let z be a complex number such that there exists an integer $r>0$ with $z^{4^{r}}=j$. Then there exists a positive constant C (depending on z) such that, for all N large enough, the following inequality holds:

$$
\left|\sum_{0 \leq n \leq 2^{2 N}-1} i_{n} z^{n}\right| \geq C(2+\sqrt{3})^{N}
$$

In particular, for such a complex number $z,\left|\sum_{0 \leq k \leq n-1} i_{k} z^{k}\right|$ is not $O(\sqrt{n})$.
Proof. If $z^{4^{r}}=j$, then, for all $d \geq r$, we clearly have

$$
z^{4^{d}}=\left(z^{4^{r}}\right)^{4^{r-d}}=j
$$

(note that $j^{3}=1$ hence $j^{4}=j$). Thus, since

$$
(j-i)\left(j^{2}+i\right)=2-\sqrt{3} \quad \text { and } \quad(j+i)\left(j^{2}-i\right)=2+\sqrt{3}
$$

we have

$$
\begin{aligned}
c_{N} & =\prod_{0 \leq k \leq N-1}\left(z^{4^{k}}-i\right)\left(z^{2 \cdot 4^{k}}+i\right) \\
& =\prod_{0 \leq k \leq r-1}\left(z^{4^{k}}-i\right)\left(z^{2 \cdot 4^{k}}+i\right) \prod_{r \leq k \leq N-1}(j-i)\left(j^{2}+i\right) \\
& =A_{z}(2-\sqrt{3})^{N}
\end{aligned}
$$

for some constant

$$
A_{z}=\prod_{0 \leq k \leq r-1}\left(z^{4^{k}}-i\right)\left(z^{2 \cdot 4^{k}}+i\right)\left[(j-i)\left(j^{2}+i\right)\right]^{-1} \neq 0
$$

Similarly $d_{n}=B_{z}(2+\sqrt{3})^{N}$ for some nonzero constant B_{z}.
Finally, this gives

$$
\begin{aligned}
\left|\sum_{0 \leq n \leq 2^{2 N}-1} i_{n} z^{n}\right| & =\frac{\left|d_{N}(1+i)+(1-i) c_{N}\right|}{2} \\
& \geq \frac{\left|(2+\sqrt{3})^{N}\right| B_{z}\left|-\left|A_{z}\right|(2-\sqrt{3})^{N}\right|}{\sqrt{2}} \\
& \geq C_{z}(2+\sqrt{3})^{N}
\end{aligned}
$$

for some positive constant C_{z} and N large enough.

JEAN-PAUL ALLOUCHE

Remark 2. Actually Theorem 2 above shows that there exists a dense set of real numbers θ such that

$$
\left|\sum_{0 \leq n \leq N-1} i_{n} e^{2 i \pi n \theta}\right| \text { is not } O(\sqrt{N})
$$

Acknowledgements. We thank the referee for very useful remarks.

REFERENCES

[1] ALLOUCHE, J.-P.-LIARDET, P.: Generalized Rudin-Shapiro sequences, Acta Arith. 60 (1991) 1-27.
[2] BRILLHART, J.-CARLITZ, L.: Note on the Shapiro polynomials, Proc. Amer. Math. Soc. 25 (1970) 114-118.
[3] BRILLHART, J.-ERDÖS, P.-MORTON, P.: On sums of Rudin-Shapiro coefficients, II, Pacific J. Math. 107 (1983) 39-69.
[4] BRILLHART, J.-MORTON, P.: Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois J. Math. 22 (1978) 126-148.
[5] BRILLHART, J.-MORTON, P.: A case study in mathematical research: The Golay-Rudin-Shapiro sequence, Amer. Math. Monthly 103 (1996) 854-869.
[6] GOLAY, M. J. E.: Statistic multislit spectrometry and its application to the panoramic display of infrared spectra, J. Optical Soc. America 41 (1951) 468-472.
[7] LAFRANCE, P.-RAMPERSAD, N.-YEE, R.: Some properties of a Rudin-Shapiro-like sequence, Adv. Appl. Math. 63 (2015) 19-40.
[8] RUDIN, W.: Some theorems on Fourier coefficients, Proc. Amer. Math. Soc. 10 (1959) 855-859.
[9] SHAPIRO, H. S.: Extremal Problems for Polynomials and Power Series, Thesis (M. S.), Massachusetts Institute of Technology, Department of Mathematics, 1951, available at: http://dspace.mit.edu/handle/1721.1/12198

Received March 25, 2016
Accepted July 25, 2016

Jean-Paul Allouche
CNRS, Institut de Mathématiques de Jussieu-PRG
Université Pierre et Marie Curie, Case 247
4 Place Jussieu
F-75252 Paris Cedex 05
FRANCE
E-mail: jean-paul.allouche@imj-prg.fr

[^0]: 2010 Mathematics Subject Classification: Primary: 11K16; Secondary: 11B85.
 Keywords: binary expansion, digital sequence, Rudin-Shapiro sequence, summatory function.
 Partially supported by the ANR project "FAN" (Fractals et Numération), ANR-12-IS01-0002.

