YET ANOTHER FOOTNOTE
 TO THE LEAST NON ZERO DIGIT OF n ! IN BASE 12

Jean-Marc Deshouillers

À la mémoire de Pierre LIARDET

Abstract

We continue the study, initiated with Imre Ruzsa, of the last non zero digit $\ell_{12}(n!)$ of n ! in base 12 , showing that for any $a \in\{3,4,6,8,9\}$, the set of those integers n for which $\ell_{12}(n!)=a$ is not 3 -automatic.

Communicated by Jean-Louis Verger-Gaugry

1. Introduction

We pursue the study, initiated in 5, prolongated in 4], of the sequence $\left(\ell_{12}(n!)\right)_{n}$, where $\ell_{b}(n)$ denotes the last (or final) non zero digit of the integer n in base b. In other words, if $v_{b}(n)$ denotes the largest integer v such that b^{v} divides n, then $\ell_{b}(n)$ is the integer in $\{1,2, \ldots, b-1\}$ congruent to $n / b^{v_{b}(n)}$ modulo b.

We do not repeat the introduction of the previous papers, but just recall in short, that $\ell_{10}(n!)$ is even as soon as $n \geq 2$ because $v_{2}(n!)$ is larger than $v_{5}(n!)$, and moreover the sequence $\left(\ell_{12}(n!)\right)_{n}$ is 5 -automatic. In the case of the sequence $\left(\ell_{12}(n!)\right)_{n}$, the number $v_{4}(n!)$ is usually larger than $v_{3}(n!)$, but may be also smaller. A key point in the study is that the sequence $\left(\ell_{12}(n!)\right)_{n}$ coincides on a set of asymptotic density 1 with a 3 -automatic sequence taking only the values 4 and 8, each with asymptotic density $1 / 2$; in [5] some doubts were expressed on the fact that the sequence $\left(\ell_{12}(n!)\right)_{n}$ could be automatic itself. Our aim is to prove the following result

[^0]Theorem 1. For $a \in\{4,8\}$ the sequence $\left\{n ; \ell_{12}(n!)=a\right\}$ is not 3 -automatic. For $a \in\{3,6,9\}$ the sequence $\left\{n ; \ell_{12}(n!)=a\right\}$ is not automatic.

We first prove the second point, showing that each of the three considered sequences has no gap, which permits to apply a criterion of Minsky and Pappert for non automatic sequences, revisited by Cobham (Proposition 3 below). We then show that each of the sequences considered in the first point is a 3 -automatic sequence, modified by a non automatic sequence.

2. The tools for the proof of Theorem 1

The following proposition recalls points established in the previous papers [5] and 4].

Proposition 1. Let $u_{0} u_{1} u_{2} \ldots u_{n} \ldots$ be the fixed point, starting with $a 4$ of the substitution $4 \rightarrow 448884884,8 \rightarrow 884448448$. The following holds true
(i) If $v_{4}(n!)>v_{3}(n!)$, a relation which occurs on a set of asymptotic density 1 , one has $\ell_{12}(n!)=u_{n}$.
Let n be an integer divisible by 144 for which $v_{3}(n!) \geq v_{4}(n!)+2$, then
(ii) for $k \in\{0,1,2,3\}$, we have $\ell_{12}((n+k)!) \in\{3,6,9\}$,
(iii) for $a \in\{3,6,9\}$, there exists $k \in\{0,2,3,7\}$ such that $\ell_{12}((n+k)!)=a$.

The second ingredient, already used in our previous papers is Legendre's relation connecting $v_{p^{a}}(n!)$ and the sum of the digits $s_{p}(n)$ of n in the prime base p, namely

$$
\begin{equation*}
v_{p^{a}}(n!)=\left\lfloor\frac{n-s_{p}(n)}{a(p-1)}\right\rfloor . \tag{1}
\end{equation*}
$$

The third ingredient is a straightforward corollary of the main result of 9$]$.
Proposition 2. There exists a constant C such that, for $n \geq 25$ one has

$$
\begin{equation*}
s_{2}(n)+s_{3}(n)>\frac{\log \log n}{\log \log \log n+C}-1 \tag{2}
\end{equation*}
$$

Our last ingredient is a sufficient criterion of Minsky and Pappert ([2], Theorem 10) implying that a sequence is not automatic.

Proposition 3. An infinite sequence of integers $\left(a_{n}\right)_{n}$ with zero asymptotic density (i.e., a_{n} / n tends to infinity) and no gap (i.e., a_{n+1} / a_{n} tends to 1) is automatic in no base.

3. Proof of Theorem 1

We first prove that there are many integers n for which $s_{3}(n)$ is small.
Lemma 1. Let $(h(n))_{n}$ be an increasing sequence of integers tending to infinity. The sequence $\left\{n ; s_{3}(n) \leq h(n)\right\}$ is not lacunary, in the sense that the sequence of the quotients of its consecutive terms tends to 1 .

Proof. Without loss of generality we may assume that $h(n)$ is an even number, say $h(n)=2 g(n)$, and that $h(n) \leq \log n / 2 \log 3$. We consider the set \mathcal{S}_{h} of integers n for which $h(n) \geq 4$ and $s_{3}(n) \leq h(n)$. Let n be in \mathcal{S}_{h}; we are going to prove that the interval

$$
\left(n, n\left(1+3^{1-g(n)}\right)\right]
$$

contains an element of \mathcal{S}_{h}, which is enough to prove the lemma.

- If $s_{3}(n) \leq h(n)-1$, we have $s_{3}(n+1) \leq s_{3}(n)+1 \leq h(n) \leq h(n+1)$ and so $(n+1)$ belongs to \mathcal{S}_{h}.
- If $s_{3}(n)=h(n)=2 g(n)$, we let $n=\eta_{K} 3^{K}+\eta_{K-1} 3^{K-1}+\cdots+\eta_{0}$ be the proper representation of n in base 3 , with $\eta_{K} \neq 0$ and $K=\lfloor\log n / \log 3\rfloor$. Writing g for $g(n)$, we have

$$
\eta_{K}+\eta_{K-1}+\cdots+\eta_{K-g+2} \leq 2(g-1)=h(n)-2
$$

and so we have

$$
\eta_{0}+\eta_{1}+\cdots+\eta_{K-g+1} \geq 2
$$

- If $\eta_{K-g+1}=2$, we consider the integer $n+3^{K-g+1}$; it is in the prescribed interval and satisfies, since there is a carry over,

$$
s_{3}\left(n+3^{K-g+1}\right) \leq s_{3}(n)=h(n) \leq h\left(n+3^{K-g+1}\right)
$$

- If $\eta_{K-g+1} \leq 1$, there exists $\ell<K-g+1$ with $\eta_{\ell} \geq 1$; we then consider the integer $n+3^{K-g+1}+3^{\ell}$, which is in the prescibed interval and satisfies

$$
s_{3}\left(n+3^{K-g+1}-3^{\ell}\right) \leq s_{3}(n)=h(n) \leq h\left(n+3^{K-g+1}-3^{\ell}\right)
$$

This proves Lemma 1
In the sequel, we shall apply Lemma 1 with
and so the sequence

$$
h(n)=2\left\lfloor\frac{\log \log n}{18 \log \log \log n}\right\rfloor
$$

$$
\begin{equation*}
\mathcal{S}=\left\{n \geq 25 ; s_{3}(n) \leq h(n)\right\} \quad \text { is not lacunary. } \tag{3}
\end{equation*}
$$

Since the expansion of 144 in base 3 is 12100 , for n in \mathcal{S} and large enough, we have

$$
s_{3}(144 n) \leq 4 s_{3}(n) \leq 4 h(n) \leq \frac{4 \log \log (144 n)}{9 \log \log \log (144 n)}
$$

This, together with (2) implies that when n is in \mathcal{S} and is large enough, we have

$$
s_{2}(144 n) \geq s_{3}(144 n)+4
$$

We now combine this last relation with Legendre's formula (1) and get that for sufficiently large $n \in \mathcal{S}$, one has

$$
\begin{equation*}
v_{3}((144 n)!) \geq v_{4}((144 n)!)+2 \tag{4}
\end{equation*}
$$

For $1 \leq a \leq 11$, we let $\mathcal{L}_{a}=\left\{n ; \ell_{12}(n!)=a\right\}$.
We start by considering the case when $a \in\{3,6,9\}$. By Proposition 1 (i), the set \mathcal{L}_{a} has zero asymptotic density; by (4), Proposition 1 (iii) and (3), it is not lacunary; so, by Proposition 33 it is not automatic and the second part of Theorem 1 is settled.

We turn now our attention to \mathcal{L}_{a} for $a \in\{4,8\}$; we let $\mathcal{U}_{a}=\left\{n ; u_{n}=a\right\}$. By Proposition 1 (i), $\mathcal{L}_{a} \subset \mathcal{U}_{a}$ and those two sets have both density $1 / 2$ and coincide on a set of density $1 / 2$. Another feature of the 3 -automatic sequence \mathcal{U}_{a}, easily seen on its definition, is that out of 4 consecutive integers, one at least belongs to it. By (4), Proposition (ii) and (3), $\mathcal{U}_{a} \backslash \mathcal{L}_{a}$ is a non lacunary infinite sequence of asymptotic density 0 , and thus, is not automatic. This implies the first part of Theorem 1 and ends its proof.

We finally remark, that the non automaticity in all bases for the sequences \mathcal{L}_{4} and \mathcal{L}_{8} is still to be proved.
acknowledgements. The Author acknowledges with thanks the support of the Indo-French Centre for the Promotion of Advanced Research (CEFIPRA 5401) and the ANR-FWF project MuDeRa.

REFERENCES

[1] ALLOUCHE, J-P.-SHALLIT, J.: Automatic Sequences, Cambridge University Press, Cambridge, UK, 2003.
[2] COBHAM, A.: Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192.
[3] DEKKING, F. M.: Regularity and irregularity of sequences generated by automata. Seminar on Number Theory, 1979-1980 (French), Exp. No. 9, 10 pp., Univ. Bordeaux, Talence, 1980.
[4] DESHOUILLERS, J-M.: A footnote to The least non zero digit of n ! in base 12, Uniform Distribution Theory 7 (2012), 71-73.
[5] DESHOUILLERS, J-M.-RUZSA, I.: The least non zero digit of n ! in base 12, Pub. Math. Debrecen 79 (2011), 395-400.
[6] DRESDEN, G.: Three transcendental numbers from the last non-zero digits of n^{n}, F_{n} and $n!$, Math. Mag. 81 (2008), 96-105.
[7] KAKUTANI, S.: Ergodic theory of shift transformations, in: Proc. The Fifth Berkeley Sympos. Math. Stat. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2, Univ. of California Press, Berkeley, Calif., 1967, pp. 405-414.
[8] SLOANE, N. J. A.: The On-Line Encyclopedia of Integer Sequences, http://oeis.org; key word: Final nonzero digit of n !
[9] STEWART, C. L.: On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63-72.

Received March 26, 2016
Accepted October 13, 2016

Jean-Marc Deshouillers

Université de Bordeaux, Bordeaux INP et CNRS
Institut mathématique de Bordeaux, UMR 5465
33405 TALENCE Cedex FRANCE
E-mail: jean-marc.deshouillers@math.u-bordeaux.fr

[^0]: 2010 Mathematics Subject Classification: 11A63, 11 B85.
 Keywords: radix representation, automatic sequences, significant digit, factorial, base 12 .
 ${ }^{1}$ On lit en première page de cet article Communicated by Pierre Liardet, formule qui masque l'enthousiasme et la précision que Pierre mettait dans son activité éditoriale, comme dans toutes ses entreprises.

