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POWERS
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Dedicated to the memory of Pierre Liardet

ABSTRACT. The spatial distribution of binomial coefficients in residue classes
modulo prime powers is studied. It is proved inter alia that empirical distribution
of the points (k,m)p−m with 0 ≤ k ≤ n < pm and

(n
k

) ≡ a (mod p)s (for

(a, p) = 1) for m → ∞ tends to the Hausdorff measure on the “p-adic Sierpiński
gasket”, a fractals studied earlier by von Haeseler, Peitgen, and Skordev.

Communicated by Jean Louis Verger-Gaugry

1. Introduction and Results

Binomial coefficients and their number theoretic properties are the subject
of a vast number of investigations. For instance, D. Singmaster [11] have studied
divisibility properties and proved that for any integer m almost all binomial
coefficients are divisible by m in the following sense

lim
N→∞

2

N(N + 1)
#

{
k, n ; 0 ≤ k ≤ n < N ∧m |

(
n

k

)}
= 1.

After this it is natural to ask what happens for the remaining set of density 0,
or how the binomial coefficients behave after dividing out the highest possible
power of m. For prime p, the first question has been answered independently
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in [2] and [5], namely the binomial coefficients not divisible by p are evenly
distributed in the prime residue classes modulo p

lim
N→∞

#
{
k, n ; 0 ≤ k ≤ n < N ∧ (nk) ≡ a (mod p)

}
#
{
k, n ; 0 ≤ k ≤ n < N ∧ (nk) �≡ 0 (mod p)

} =
1

p− 1
for (a, p) = 1.

The methods used in these two papers are rather different: in [2] multiplicative
characters are used, whereas in [5] polynomial congruences over finite fields are

applied. Both methods are based on É. Lucas’ [10] congruence(
n

k

)
≡
(
n0

k0

)(
n1

k1

)
· · ·
(
nL

kL

)
(mod p),

where n =
∑L

�=0 n�p
� and k =

∑L
�=0 k�p

� are the respective p-adic digital expan-
sions of n and k (with possible leading zeroes in the expansion of k). The result
was extended to prime powers in [1] using a generalisation of Lucas’ congru-
ence due to A. Granville [7], see Theorem 3. The second question was addressed
in the same paper, where it was shown that the p-free parts of the binomial co-
efficients are uniformly distributed in Z

∗
p (p-adic integers). Notice that the p-free

part of an integer n is given by n(p) = np−vp(n), where vp denotes the p-adic
valuation. The result reads as

lim
N→∞

2

N(N + 1)
#

{
k, n ; 0 ≤ k ≤ n < N ∧

(
n

k

)
(p)

≡ a (mod ps)

}

=
1

φ(ps)
=

1

ps−1(p− 1)
(1)

for all s ∈ N and all a not divisible by p; φ denotes Euler’s totient as usual.

Furthermore, the number of binomial coefficients up to row N which have p-
adic valuation j, has been studied by L. Carlitz [3]. This is based on E. E. Kum-
mer’s result [9], which states that the p-valuation of

(
n
k

)
equals the number

of carries in the subtraction n − k performed in base p. In [1] Carlitz’ result
could be refined to a precise asymptotic formula; recently L. Spiegelhofer and
M. Wallner [12] found expressions for

#

{
k, n ; 0 ≤ k ≤ n ∧ vp

((
n

k

))
= j

}

in terms of the numbers of certain blocks occurring in the digital expansion of n.

Also recently, F. Greinecker [8] could prove that binomial coefficients, Stirling
numbers, and more generally number schemes satisfying generalisations of Lucas’
congruence are spatially uniformly distributed modulo p in a sense that we will
make precise below.
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The present paper exhibits detailed properties of the distribution of binomial
coefficients in residue classes modulo prime powers in the respects introduced
above.

The first theorem states that p-free parts of
(
n
k

)
are uniformly distributed

in residue classes modulo ps and simultaneously spatially with respect to two-
-dimensional Lebesgue measure λ2 (restricted to the triangle {(x, y) ∈ R

2;
0 ≤ x ≤ y ≤ 1} and normalised).

������� 1� Let p be a prime, s ≥ 1, and (a, p) = 1. Then for any λ2-continuity
set A we have

lim
m→∞

2

pm(pm + 1)
#

{
k, n ; 0≤k≤n<pm∧

(
n

k

)
(p)

≡a (mod ps)∧(k, n)p−m∈A

}

=
λ2(A)

φ(ps)
. (2)

Let μ be the
log

p(p+1)
2

log p -dimensional Hausdorff measure restricted to the “p-adic

Sierpiński gasket”—the attractor of an iterated function system given in [13]
and described below. The second theorem states that for given j the binomial
coefficients with prescribed p-valuation equal to j exhibit a similar behaviour
as well; their p-free parts are uniformly distributed modulo ps, whereas they are
spatially uniformly distributed with respect to μ.

������� 2� Let p be a prime, s ≥ 1, j ≥ 0, and (a, p) = 1. Then for any
μ-continuity set A we have

lim
m→∞

#
{
k, n ; 0≤k≤n<pm ∧ pj‖(nk) ∧ p−j

(
n
k

) ≡ a (mod ps) ∧ (k, n)p−m ∈ A
}

#
{
0≤k≤n<pm ; pj‖(nk)}

=
μ(A)

φ(ps)
. (3)

���	�
 1� Notice that Theorem 1 implies (1) choosing A = {(x, y) ; 0 ≤ x ≤
y ≤ Np−�logp N�}. Similarly, Theorem 2 implies [1, Theorem 6] (except for the
error term) with the same choice of A.

2. Proofs

The proofs will make use of exponential sums involving additive characters
on R

2 and multiplicative characters on Z/psZ. As usual in this context, we write
e(t) = e2πit.
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In the sequel we will use the notation (n!)p for the product of all integers
less than or equal to n, which are not divisible by p. Since the subscript p will
only occur with factorials this should not cause any confusion. With the help
of this notation we can formulate the following theorem due to A. Granville [7].
For an earlier version of this congruence we refer to [4].

������� 3� Suppose that a prime power ps and positive integers n = m + r
are given. Write n = n0 + n1p + · · · + ndp

d in base p, and let Nj be the least
positive residue of [n/pj ] mod ps for each j ≥ 0 (so that Nj = nj +nj+1p+ · · ·
· · · + nj+s−1p

s−1); also make the corresponding definitions for mj,Mj, rj , Rj .
Let ej be the number of ‘carries’, when adding m and r in base p, on or beyond
the jth digit. In particular, we have pe0‖(nm). Then
1

pe0

(
n

m

)
≡ (±1)es−1

(
(N0!)p

(M0!)p(R0!)p

)(
(N1!)p

(M1!)p(R1!)p

)
. . .

(
(Nd!)p

(Md!)p(Rd!)p

)
mod ps,

(4)
where (±1) is (−1) except if p = 2 and s ≥ 3.

Preliminary results

We will make use of two technical Lemmas.

The first Lemma is [6, Lemma 5] (with 2 replaced by p).

����	 1� Let B(t) be a matrix function mapping vectors t ∈ R
d to square

matrices satisfying

‖B(t)−B‖ ≤ C‖t‖ for ‖t‖ ≤ T, (5)

|[B(t)]i,j | ≤ [B]i,j for all i, j (6)

for some C, T > 0, some non-negative matrix B, and the matrix norm ‖ · ‖
induced by the maximum norm on the vector space. Assume that B has 1 as
a simple dominating eigenvalue. Then the sequence of matrices

PK(t) = B
(
p−Kt

)
B
(
p−(K−1)t

) · · ·B(p−1t
)

converges to a limit P (t) for all t; P (t) is continuous at t = 0.

In the sequel ‖·‖ will always denote the matrix norm induced by the maximum
norm.

���	�
 2� It is not stated in [6, Lemma 5] but immediately follows from the
proof that if B(t) depends continuously on t, then the convergence to P (t)
as stated in the Lemma is uniform in t on compact subsets of R

d and P (t)
is continuous on R

d. Furthermore, the relation P (t) = P (0)P (t) holds. Since
the matrix P (0) has rank 1 by the Perron-Frobenius theorem, this implies that
the matrix P (t) has rank at most 1.
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The second lemma is a generalisation of Lemma 1.

����	 2� Let A(t) and B(t) be matrix functions mapping vectors t ∈ R
d

continuously to square matrices satisfying

‖B(t)−B(0)‖ ≤ C‖t‖ for ‖t‖ ≤ T, (7)

‖A(t)−A(0)‖ ≤ C‖t‖ for ‖t‖ ≤ T, (8)

|[B(t)]i,j | ≤ [B(0)]i,j for i, j and all t, (9)

|[A(t)]i,j | ≤ [A(0)]i,j for i, j and all t (10)

for some C, T > 0. Furthermore, assume that B = B(0) has 1 as simple domi-

nating eigenvalue and set A = A(0). Define P
(j)
K inductively by setting

P
(0)
K (t) = B

(
p−Kt

)
B
(
p−(K−1)t

) · · ·B(p−1t
)
,

P
(0)
0 (t) = I

and

P
(j)
K (t) =

K∑
m=1

P
(0)
K−m(p−mt)A(p−mt)P

(j−1)
m−1 (t). (11)

Then

P (j)(t) = lim
K→∞

P
(j)
K (t)(
K
j

) =
(
P (0)A

)j
P (t), (12)

where P (t) is the limit given in Lemma 1. The convergence is uniform on com-
pact subsets of Rd.

���	�
 3� Notice that P
(j)
K (t) is the sum of all products of matrices A(·) and

B(·) containing exactly j matrices A(·). In our application, this will reflect the
combinatorial structure of j carries.

P r o o f. We proceed by induction on j to prove

lim
K→∞

P
(j)
K (t)(
K
j

) =
(
P (0)A

)
P (j−1)(t).

From Lemma 1 and Remark 2 we have that
(
PK(t)

)
K

converges uniformly

to P (t) on compact subsets of Rd, which is the case j = 0.
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For the step j − 1 → j we use the recursion formula (11). We split the range
of summation into

m <
√
K,

√
K ≤ m < K −

√
K and m ≥ K −

√
K

and estimate the first and the last sum∥∥∥∥∥∥
∑

m<
√
K

P
(0)
K−m(p−mt)A(p−mt)P

(j−1)
m−1 (t)

∥∥∥∥∥∥=O
⎛
⎝ ∑

m<
√
K

mj−1

⎞
⎠=O(Kj/2)

∥∥∥∥∥∥
∑

K−√
K≤m≤K

P
(0)
K−m(p−mt)A(p−mt)P

(j−1)
m−1 (t)

∥∥∥∥∥∥ = O(Kj−1
√
K) = O(Kj−1/2).

For the middle sum, we write

PK−m(p−mt) = P (0) + o(1),

A(p−mt) = A+ o(1),

and

P
(j−1)
m−1 (t) =

(
m− 1

j − 1

)
P (j−1)(t) + o(mj−1)

(which hold uniformly on compact subsets of Rd) and insert these to obtain∑
√
K≤m<K−√

K

P
(0)
K−m(p−mt)A(p−mt)P

(j−1)
m−1 (t)

=
∑

√
K≤m<K−√

K

P (0)A

(
m− 1

j − 1

)
P (j−1)(t) + o(Kj)

=

(
K

j

)(
P (0)A

)
P (j−1)(t) + o(Kj).

Putting everything together, we obtain (12). �

P r o o f o f T h e o r e m 1. We study the following exponential sum

S(1)
χ (m, t1, t2) =

∑
0≤k≤n<pm

χ

((
n

k

)
(p)

)
e
(
(kt1 + nt2)p

−m
)
, (13)

where χ denotes a Dirichlet character modulo ps. In order to compute this
sum, we construct a finite automaton, which computes

(
n
k

)
modulo pswith the

help of (3).

Let A = {0, 1, . . . , p− 1}2 be the alphabet. The set of states is given by

S = {0, . . . , ps−1 − 1}2 × {0, 1}.
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The transitions are defined by

(ε, δ) : (ν, κ, η) �→
⎧⎨
⎩
(
�νp +εps−2, �κp +δps−2, 0

)
if (κmod p)+η ≤ νmod p,(

�νp +εps−2, �κp +δps−2, 1
)

if (κmod p)+η > νmod p,
(14)

where κmod p denotes the non-negative remainder in the Euclidean division κ/p.

The states (·, ·, 0) represent the situation that no carry occurred in the subtrac-
tion of the least significant digits, whereas (·, ·, 1) encode the situation that a
carry occurred. A similar automaton was used in [13, 14] in the study of the
p-adic Sierpiński gasket.

For a given pair of integers (n, k) we start at the state(
n mod ps−1, k mod ps−1

)
;

technically, we would have to add extra states, which emulate reading the first
s− 1 digits.

For t = (t1, t2) ∈ R
2 we define the marked transition matrix Mχ(t) of the

automaton defined above by

[Mχ(t)](ν1,κ1,η1),(ν2,κ2,η2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ
(
(±1)η1 (n!)p

(k!)p((n−k−η1)!)p

)
e(εt1+δt2) if n−k−η1≥0

and ν2 = � ν1
p �+ εps−2

and κ2 = �κ1
p �+ δps−2

and [[(κ1 mod p) + η1 > (ν1 mod p)]] = η2,

χ
(
(±1)η1 (n!)p

(k!)p((ps−1+n−k−η1)!)p

)
e(εt1+δt2) if n−k−η1<0

and ν2 = � ν1
p
�+ εps−2

and κ2 = �κ1
p �+ δps−2

and [[(κ1 mod p) + η1 > (ν1 mod p)]] = η2,

0, otherwise,

where, for short, we denote

n = ν1 + εps−1 and k = κ1 + δps−1.

The value (±1) is chosen according to Theorem 3. Here and later on we use
Iverson’s notation [[A]], which is 1, if A is true, and 0 otherwise.

Then we have

S(1)
χ (m, t) = v(p−mt)TMχ

(
p−(m−s)t

)
Mχ

(
p−(m−s−1)t

) · · ·Mχ(p
−1t)w, (15)

where w denotes the column vector with all entries (1− η).
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The vector v(t) is given by
[v(t)](ν,κ,η) = e

(
(νt1 + κt2)

)
.

We write 1 for the vector with all entries 1 and observe that v(0) = 1.

We notice that the automaton defined by the transition function (14) has
exactly p2 transitions emanating from each state. The marked transition matrix
Mχ0

(0) (χ0 being the principal character) marks each of these transitions by 1;
thus this matrix has exactly p2 entries 1 per line and is a Perron-Frobenius ma-

trix with dominating eigenvalue p2. From (13) the sum S
(1)
χ (m, t) has pm(pm+1)

2

summands. Thus we divide (15) by pm(pm+1)
2 and let m tend to infinity. For the

principal character this results in

λ̂(t) = lim
m→∞

(
pm(pm + 1)

2

)−1

Sχ0
(m, t) = 1TP (t)w, (16)

where

P (t) = lim
m→∞

(
pm(pm + 1)

2

)−1

Mχ0

(
p−(m−s)t

)
Mχ0

(
p−(m−s−1)t

) · · ·Mχ0
(p−1t)

is a convergent infinite matrix product applying Lemma 1 withB(t) = 1
p2Mχ0

(t).

The limit λ̂(t) is the Fourier transform of the two-dimensional Lebesgue mea-
sure restricted to the triangle {(x, y) ∈ R

2 ; 0 ≤ x ≤ y ≤ 1}, normalised to total
measure 1.

For non-principal characters χ, at least one non-zero entry of Mχ(0) differs
from 1, because

(
n
1

)
(p)

=n(p) implies that the character is evaluated at all prime

residue classes (mod ps); thus we have
‖Mχ(0)‖ < p2.

From this we conclude, using the continuity of Mχ(t) at t = 0,

lim
m→∞

(
pm(pm + 1)

2

)−1

Sχ(m, t)

= 1T lim
m→∞

(
pm(pm + 1)

2

)−1

Mχ

(
p−(m−s)t

)
Mχ

(
p−(m−s−1)t

) · · ·Mχ(p
−1t)w = 0.

Summing up, we have

lim
m→∞

(
pm(pm + 1)

2

)−1 ∑
0≤k≤n<pm

[[(
n

k

)
(p)

≡ a (mod ps)

]]
e
(
(nt1 + kt2)p

−m
)

=
1

φ(ps)

∑
χ

χ(a) lim
m→∞

(
pm(pm + 1)

2

)−1

S(1)
χ (m, t) =

1

φ(ps)
λ̂(t),

which finishes the proof of Theorem 1 by Levy’s continuity theorem. �
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P r o o f o f T h e o r e m 2. In order to obtain the desired result, we study the
exponential sum

S(2)
χ (m, j, t1, t2) =

∑
0≤k≤n<pm

[[
pj‖
(
n

k

)]]
χ

(
p−j

(
n

k

))
e
(
(kt1 + nt2)p

−m
)
. (17)

The underlying automaton is the same as in the proof of Theorem 1, but we
have to take into account the number of carries in the subtraction. This is done
by a new marking of the transitions using the following two matrices

[B(t)](ν1,κ1,η1),(ν2,κ2,η2) =

{
2

p(p+1) [Mχ0
(t)](ν1,κ1,η1),(ν2,κ2,η2) if η1 = 0,

0 if η1 = 1,

[A(t)](ν1,κ1,η1),(ν2,κ2,η2) =

{
[Mχ0

(t)](ν1,κ1,η1),(ν2,κ2,η2) if η1 = 1,

0 if η1 = 0.

The matrix B(t) encodes all transitions without carry, whereas A(t) encodes
a carry in the subtraction of the least significant digit. Notice that we normalise
B(t) to satisfy the assumption of Lemma 2.

We obtain

Sχ0
(m, j, t) =

(
p(p+ 1)

2

)m min(j,s−1)∑
�=0

v�(p
−mt)TP

(j−�)
m−s (t)w, (18)

where the vectors v� encode starting blocks of s − 1 digits containing 
 carries
in the subtraction:

v�(t)(ν,κ,η) =

⎧⎪⎨
⎪⎩
e(νt1 + κt2) if η = [[ν < κ]] and there are exactly 
 carries

in the subtraction ηps + ν − κ,

0, otherwise.

Applying Lemma 2 yields

lim
m→∞

Sχ0
(m, j, t)(

m
j

) (p(p+1)
2

)m = v0(0)
T
(
P (0)A

)j
P (t)w. (19)

We now observe that v0(0) is a vector with non-negative entries and (P (0)A)j

is a matrix with non-negative entries. Thus v0(0)
T
(
P (0)A

)j
is a vector with

non-negative entries. Using the relation P (t) = P (0)P (t), we can rewrite the
limit (19) as

v0(0)
T
(
P (0)A

)j
P (0)P (t)w;

the vector v0(0)
T
(
P (0)A

)j
P (0) is now proportional to the left Perron-Frobenius

eigenvalue of B, because P (0) is a matrix of rank 1 with this eigenvector.
Thus the limit (19) is proportional to vTP (t)w for any non-negative vector v.
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We set
μ̂(t) = lim

m→∞
Sχ0

(m, 0, t)(
p(p+1)

2

)m .

Then by the above argument, we have

μ̂(t) = lim
m→∞

Sχ0
(m, j, t)

Sχ0
(m, j,0)

.

From [13] we infer that the sets

Qm =

{
(n, k)p−m ; 0 ≤ k ≤ n < pm and p � |

(
n

k

)}

tend to the attractor Q of the iterated function system defined by

Fa,b(x, y) =

(
x+ a

p
,
y + b

p

)
,

where 0 ≤ b ≤ a < p (the “p-adic Sierpiński triangle”).

Furthermore, the measures

μm =
1(

p(p+1)
2

)m ∑
x∈Qm

δx

tend to the Hausdorff measure of dimension s =
log

p(p+1)
2

log p restricted to Q and

normalised to total mass 1. This implies that μ̂(t) is the Fourier transform of this
measure.

In order to sieve out the binomial coefficients with p−j
(
n
k

) ≡ a (mod ps)
we consider the sum

1

φ(ps)

∑
χ

χ(a)Sχ(m, j, t)

and observe, using the same arguments as in the proof of Theorem 1, that
Sχ(m, j, t) (for χ �= χ0) is of smaller order of magnitude than Sχ0

(m, j, t).
This finishes the proof of Theorem 2. �
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[9] KUMMER, E. E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen,
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fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1878),
49–54.

[11] SINGMASTER, D.: Notes on binomial coefficients, I—A generalization of Lucas’ con-
gruence, II—The least n such that pe divides an r-nomial coefficient of rank n,
III—Any integer divides almost all binomial coefficients, J. London Math. Soc. 8 (1974),

545–548, 549–554, 555–560.
[12] SPIEGELHOFER, L.—WALLNER, M.: Divisibility of binomial coefficients by powers

of primes, arXiv:1604.07089, 2016.
[13] VON HAESELER, F.—PEITGEN, H.-O.—SKORDEV, G.: Pascal’s triangle, dynamical

systems and attractors, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 479–486.

[14] , Cellular automata, matrix substitutions and fractals, Ann. Math. Artificial
Intelligence 8 (1993), 345–362. (Theorem proving and logic programming (1992).)

Received May 10, 2016
Accepted June 14, 2016

Guy Barat

Peter J. Grabner
Institut für Analysis und Zahlentheorie
Technische Universität Graz
Kopernikusgasse 24
8010 Graz
AUSTRIA

E-mail : guy.barat@tugraz.at
peter.grabner@tugraz.at

161


	1. Introduction and Results
	2. Proofs
	Preliminary results

	REFERENCES

