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ON THE CONSTANT IN THE AVERAGE DIGIT

SUM FOR A RECURRENCE-BASED NUMERATION

Christian Ballot

Dedicated to the memory of Pierre Liardet

ABSTRACT. Given an integral, increasing, linear-recurrent sequence A with
initial term 1, the greedy algorithm may be used on the terms of A to repre-
sent all positive integers. For large classes of recurrences, the average digit sum is

known to equal cA logn+O(1), where cA is a positive constant that depends on A.
This asymptotic result is re-proved with an elementary approach for a class of spe-
cial recurrences larger than, or distinct from, that of former papers. The focus is
on the constants cA for which, among other items, explicit formulas are provided
and minimal values are found, or conjectured, for all special recurrences up to

a certain order.

Communicated by Georges Grekos

1. Introduction

Given a nondecreasing unbounded sequence of integers A = (ak)k≥0 with
a0 = 1, all positive integers n can be expressed uniquely, using the greedy al-

gorithm, as a sum
∑k

i=0 diai, where the digits di are nonnegative integers and
dk ≥ 1. This algorithm finds the largest index k such that ak ≤ n and defines
dk as �n/ak�. The procedure continues replacing n by n− dkak to find the next

nonzero digit. We keep iterating this process until
∑k

i=0 diai = n, which is bound
to happen because a0 = 1. Then the sum-of-digit function s, or sA, is defined as

s(n) :=
∑k

i=0 di. The cumulative sum-of-digit function S, or SA, is, conforming

to tradition, defined as S(n) :=
∑n−1

k=0 s(k), where we conveniently set s(0) := 0.

Here we are primarily concerned with sequences A which, in addition to the
above hypotheses, are linear recurrent and have a monic integral characteristic
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polynomial with a simple dominant zero α > 1. By dominant we mean that
α is real and larger than the modulus of any other zero of the characteristic
polynomial. Thus,

ak+m = P1ak+m−1 + P2ak+m−2 + · · ·+ Pmak,

for all k ≥ 0, some m ≥ 1, where the coefficients Pi are integers, usually non-
negative, and, as k tends to infinity, ak ∼ aαk for some real a > 0.

Some early papers referenced in [3] were concerned with the geometric case
m = 1, i.e., A = (bk)k≥0, b ≥ 2 an integer, and showed that S(n) ∼ cAn logn as
n tends to infinity, or, more precisely, that

S(n) = cAn logn+O(n), (1)

with cA = (b− 1)/(2 log b).

Later Trollope [20] improved (1) for b = 2 by showing that

S(n) = cAn logn+ nG

(
logn

log b

)
, (2)

where G is a continuous function of period 1 of which a fully explicit description
was found. Given that (2) holds with cA = (2 log 2)−1, the knowledge that G
is of period 1 readily implies that S(2n) = 2S(n) + n. Conversely, the relations
s(2n) = s(n) and s(2n+1) = s(n)+1 imply S(2n) = 2S(n)+n, which yields the
1-periodicity of G. Using other techniques—Fourier analysis and combinatorics–
–and thus obtaining a different expression for G, Delange [7] proved (2) for
a general base b with G continuous of period one and nowhere differentiable.
Much later, Delange’s results were re-proved using Mellin transforms and the
Perron formula [12]. Incidentally, in 1999, Cooper and Kennedy [6] emulated the
method of Trollope for a general base b.

Some ten years after Delange’s work, Coquet and van den Bosch [5] pro-
duced a concise and beautiful paper dealing with the sequence (ak)k≥0, where
ak = Fk+2 and (Fk)k≥0 is the Fibonacci sequence defined by F0 = 0, F1 = 1
and Fk+2 = Fk+1 + Fk, for all k ≥ 0. They proved that

S(n) = cAn logn+ nG

(
logn

logα

)
+ O(logn), (3)

where G is a continuous, nowhere differentiable function of period 1 and
cA = 3−α

5 logα , α being the dominant zero of x2 − x− 1.

Pethö and Tichy [16] extended (3) with G bounded, but not necessarily con-
tinuous, nor periodic to all recurrences A that satisfy{

P1 ≥ P2 ≥ · · · ≥ Pm > 0,

ak > P1(a0 + · · ·+ ak−1), k = 1, . . . ,m− 1.
(4)
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The condition P1 ≥ P2 ≥ · · · ≥ Pm > 0 guaranties the existence of a dominant
zero α > 1 of the characteristic polynomial of A. A year later, Grabner and
Tichy [13] widened the validity of (3) to a larger class of recurrences, namely
those satisfying ⎧⎨

⎩
P1 ≥ P2 ≥ · · · ≥ Pm > 0,

ak ≥ P1ak−1 + · · ·+ Pka0 + 1, k = 1, . . . ,m− 1.
(5)

They corrected a few mistakes of the paper [16], and determined exactly for
which recurrences the function G in (3) is continuous of period 1 when m ≥ 2.
This occurs for so-called canonical recurrences, i.e., if and only if the inequality
on the second line of (5) is an equality. Thus, G is continuous of period 1 for
instance when ak = Fk+2, as proved in [5], or when ak = tk+3 and (tk)k≥0 is
the tribonacci sequence1, i.e., the fundamental sequence of x3−x2−x− 1 (with
initial values 0, 0, and 1). The function G is bounded but neither continuous,
nor periodic, in the other cases. Most importantly for our purpose, they prove,
using a result of Parry on the frequency of α-adic digits, an explicit formula
for cA when (5) holds, which with f(x) = xm − P1x

m−1 − · · · − Pm is

cA = (αf ′(α) logα)−1

(
m∑
k=2

(
Pkα

m−k
k−1∑
j=1

Pj

)
+

1

2

m∑
k=1

P 2
kα

m−k − 1

2
αm

)
. (6)

Much work has been done on the distribution of the sum-of-digit function
often proving its asymptotic normality. For each n ≥ 1 one defines the discrete
random variable Xn by its probability function

Pr (Xn = j) := #{k < n; sA(k) = j}/n.
Its expectation EXn is SA(n)/n and its variance 1

n

∑
k<n(sA(k) − EXn)

2.
We merely point out two relevant papers which contain a wealth of references [10],
and more recently [14] which studies the distribution of summands on inter-
vals [ak, ak+1), for all canonical recurrences (ak) with nonnegative Pi’s and
P1Pm > 0.

This paper is mostly concerned with establishing that SA(n)=cAn logn+O(n)
for a class of recurrences larger than (5), with a pedestrian and self-contained
approach, which yields a formula equivalent to (6). We then determine, or con-
jecture, what the least constant cA is for all recurrences in this class whose order
is less than an arbitrary bound. However, our approach also provides conclu-
sions for recurrences which, for instance, do not necessarily have characteristic
polynomials with nonnegative coefficients.

1Its code number in the OEIS, [19], is A000073
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A first draft of this paper was written, while the author was unaware of the
work done beyond that of Coquet and van den Bosch [5]. This first draft was
written with the idea of improving on the work of the two papers [18, 3]. In [18],
Pihko considered the sequence ak = Fk+2 and, using elementary arguments,
reproved the known fact that S(n) ∼ cFn logn, with cF = (γ

√
5 log γ)−1 �

0.574, γ being the largest zero of x2−x− 1. The function R(n) :=
∑k

i=0 diS(ai)
is introduced and shown to satisfy R(n) ∼ cFn logn when n tends to +∞.
An easy induction shows the difference S(n) − R(n) is O(n) and the result
follows. The asymptotic result R(n) ∼ cFn logn is first established for n running
through the Fibonacci numbers F2, F3, . . . , Fk, . . . Then, by some rather lengthy
and idiosyncratic calculations, it is established for a general n. One purpose of [3]
was to move from the asymptotics of S(Fk) to those of S(n), for general n, more
swiftly by using a Cesàro-like theorem. Also, in [3], a new elementary proof
that S(n) ∼ cn logn for geometric sequences ak = bk, one closely analogous
to the proof given for Fk+2, is written. Our intention was to devise a truly
common proof, along the method of [3], establishing (1), i.e., SA(n) = cAn logn+
O(n), for many recurring sequences, not only the Fibonacci and the geometric
sequences. This endeavor now appears in Section 2. All that is required is that A
be nondecreasing and have a characteristic polynomial with a simple dominant
zero α > 1, and that (1) holds when n runs through the sequence (ak). This is
Theorem 2. That R(n) is proportional to n logn up to a O(n)-function comes
from Theorem 1, which is the Cesàro-like theorem of [3]. That the difference
S(n) − R(n) is O(n) is proved in Theorem 2 again by an inductive argument,
where the function R is generally defined by

R(n) :=

k∑
i=0

diS(ai), whenever n =

k∑
i=0

diai. (7)

Looking at the papers [5, 16, 13], one sees that our route is not all that different
from theirs. It is usually proved that S(ak) = bkak + O(ak) and then, rather
than using the function R(n) as we do, the deviation of S(n) from a sum that

involves
∑k

i=0 diα
i, is calculated to eventually measure the asymptotics of S(n).

Thus we give another proof of Theorem 2, not based on induction, using a
technique of these papers.

In Section 3, we put to use the method of Section 2 to special recurrences.
By this, we mean an integral linear recurrence A = (ak)k≥0 annihilated by a
special polynomial f(x) = xm −P1x

m−1 −P2x
m−2 − · · · −Pm, (m ≥ 1), that is,

such that {
am−1 ≥ am−2 ≥ · · · ≥ a1 > a0 = 1,

P1 + P2 + · · ·+ Pi ≥ Pj + Pj+1 + · · ·+ Pj+i−1,
(8)
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for i ≥ 1, j ≥ 1 and i + j ≤ m + 1, where the Pi’s are nonnegative integers,∑m
i=1 Pi ≥ 2. Thus, P1 is at least as large as any Pj, P1 + P2 is at least as large

as the sum of any two consecutive Pj ’s, etc. Note that special recurrences are
nondecreasing.

In particular, all recurrences for which (5) holds are special, but x4 − 3x3 −
x2 − 3x− 1 or x5 − x4 − 1 are also special.

The upshot of Section 3 is Theorem 4 with an explicit description of the
constants cA for all special recurrences.

Echoing a concern raised in the introduction of [3] about the least constant
cA that may occur, the minimal constants are determined for all special recur-
rences of order 1, 2 and 3 in Section 4. In higher order cases, we only state a
conjecture which appears in Section 5. An infinite family of recurrences, namely
xq − xq−1 − 1, (q ≥ 1), is conjectured to offer the minimal constant cA within
the class of all special recurrences of degree at most q. The dominant zero
of xq − xq−1 − 1 is estimated with enough precision so as to show that the
corresponding constant cA is asymptotically equivalent to (log q)−1 as q tends
to infinity.

The method of Section 2 implies that if bk := SA(ak) is annihilated by the
square of the characteristic polynomial of (ak), a condition that holds for special
recurrences, then SA(n) = cAn logn + O(n). A final sixth section brings some
degree of flexibility on this condition without affecting the result (1) on SA(n),
except that the formula for cA is more general; see Theorem 6 and the equa-
tion (26). Some examples of non-special recurrences are treated. Remarkably,
some recurrences with characteristic polynomial x3 − x− 1, i.e., with dominant
zero the least Pisot number, lend themselves to our extended method, and yield
a constant cA noticeably smaller than the least constant associated with special
recurrences of degree ≤ 3; see Theorem 9.

We do not know how far the method can be pushed. Is it possible to relax
the general hypotheses (8) on special polynomials further than what we did in
Theorem 6? What are the limits of validity of the formulas for cA of Theorem 4?
The constants cA obtained in Section 6 for non-special recurrences sometimes do,
but mostly do not fit formula (6), or the equivalent general formula of Theorem 4.
Nondecreasing recurrences associated with the non-special polynomials x2−Px−
(P + 1), P ≥ 1, still obey those formulas according to the remark that follows
Theorem 7.

Also it would be interesting to investigate the asymptotics of the cumula-
tive sum-of-digit functions when other representations than that provided by
the greedy algorithm are used. One may consult the paper [17] and its refer-
ences for possibilities. The distribution of the sum-of-digit for the far-difference
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representation of integers which uses distinct signed Fibonacci summands—at
least four indices apart if of the same sign and at least three otherwise—was

studied on intervals (σk−1, σk], where σk =
∑�k/4�

i=0 Fk−4i in [15]. Suppose m ≥ 1

is an integer. Put a0 = 1 and, for n = km + r, 1 ≤ r ≤ m, an = 2r(m + 1)k.
Then, if at most one summand from each subset {a0}, or {aim+1, aim+2, . . .
. . . , aim+m}, (i ≥ 0), is allowed, each positive integer has unique representa-
tion [9]. The authors [9] studied the distribution of summands, from various
points of view, on intervals [0, 2(m + 1)k). In particular, they showed that,
for N = 2(m + 1)k, SA(N) = m

m+1Nk + N
2 . Finally, given an increasing inte-

gral recurrence A = (ak)k≥0, results on the number of representations
∑

i≥0 diai
of an integer n when the digits di are nonnegative and bounded and on the
average number of such representations may be found in [11].

Throughout, we use the symbols E and I to denote respectively the shift oper-
ator, i.e., E ·ak = ak+1 and the identity operator. We use the term characteristic
polynomial of a sequence A to mean the monic and least-degree annihilating poly-
nomial of A. The fundamental sequence associated with a polynomial f of degree
m is the recurrence with characteristic polynomial f and initial values 0, . . . , 0, 1
(m− 1 zeros).

2. Moving from SA(ak) to SA(n)

In this section, we do not yet assume that recurrences are special. We establish
a few lemmas that will be handy throughout the paper before proving our main
theorem, which roughly states that if for a nondecreasing integral recurrence
A = (ak)k≥0 with ak ∼ aαk, a > 0, α > 1, we have SA(n) = cn logn + O(n)
for n = ak, then SA(n) = cn logn+O(n) is true for all n.

����� 1� Let A = (ak)k≥0 be a recurring sequence of positive real numbers
such that the characteristic polynomial of A has a simple real dominant zero
α > 1. Then the set of quotients ak+1/ak is bounded above.

P r o o f. By the hypothesis, there is a complex number a such that ak − aαk =
o(αk). Conjugating yields ak − āαk = o(αk) with ā the complex conjugate of a.
Hence, (a − ā)αk = o(αk) which implies that a = ā, i.e., a is real (> 0).
Thus, for an ε in (0, 1) we find, by the hypothesis, that for all k large enough
either ak+1 ≤ ak, or

aαk(1− ε) ≤ ak < ak+1 < aαk+1(1 + ε), so that
ak+1

ak
≤ α

1 + ε

1− ε
. �
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The next lemma has been variously noticed and used in the literature, e.g.,
[6, Lemma 1] or [16, proof of Lemma 3].

����� 2� Suppose a0 = 1 and A = (ak)k≥0 is a nondecreasing sequence of in-
tegers. Suppose d is a nonnegative integer satisfying dak < ak+1 for some k ≥ 0.
Then

S(dak) = dS(ak) +
d(d− 1)

2
ak, (9)

where S is the cumulative digit sum with respect to A.

P r o o f. There is nothing to prove if d ≤ 1 so assume d ≥ 2. With s the

digit-sum function, we may write S(dak) = S
(
(d − 1)ak

)
+
∑dak−1

j=(d−1)ak
s(j).

For integers j in the latter sum, we have s(j) = d− 1+ s
(
j− (d− 1)ak

)
because

j < dak < ak+1. Thus, S(dak) = S
(
(d − 1)ak

)
+ (d − 1)ak + S(ak). Summing

over all differences S(eak)− S
(
(e− 1)ak

)
, 2 ≤ e ≤ d, e integral, leads to

S(dak) = dS(ak) +

(
d−1∑
j=1

j

)
ak . �

We repeat the proof of the Cesàro-like theorem of paper [3] but with notation
more appropriate to this paper.

����	�� 1� Let (ak)k≥0 and (bk)k≥0 be sequences of real numbers satisfying

(i) ak ∼ aαk, a > 0, α > 1, and

(ii) bk = b k ak +O(ak), for some b > 0, as k tends to infinity.

Define

Ak =

k∑
i=0

diai , Bk =

k∑
i=0

dibi ,

where the di’s lie in some interval [0, d+], d+ ≥ 1.

Then, regardless of the choice of the di’s as long as dk ≥ 1, we have

Bk = b k Ak +O(Ak), as k tends to infinity.

P r o o f. By the triangular inequality, we see that∣∣∣∣ Bk

kAk
− b

∣∣∣∣ = (kAk)
−1

k∑
i=0

di |bi − bkai|

≤ (kAk)
−1

(
k∑

i=0

di |bi − biai|+ b

k∑
i=0

diai(k − i)

)
.
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By hypothesis, there is a positive K such that |bi − biai| ≤ Kai for all i’s.
Therefore the first sum in the previous expression is bounded above by KAk.
For the second sum we see that

k∑
i=0

diai(k − i) 
 ad+
k∑

i=0

αi(k − i) 

k∑

j=0

jαk−j < αk
∑
j≥0

jα−j .

That is,
k∑

i=0

diai(k−i) 
 ak ≤ Ak. Hence,

∣∣∣∣ Bk

kAk
− b

∣∣∣∣
 1

k
, i.e., Bk=bkAk+O(Ak). �

����	�� 2� Let A = (ak)k≥0 be a nondecreasing linear recurrent sequence
of integers with a0 = 1. Suppose the characteristic polynomial of A has a simple
dominant zero α > 1. Let S denote the cumulative digit sum with respect to A and
assume S(ak) = bkak +O(ak) for some positive b. Then, as n tends to infinity,
we have

S(n) = cAn logn+O(n), where cA = b/ logα.

P r o o f. By Lemma 1, digits in the greedy-algorithm representation of integers
(with respect to A) are bounded. Let d+ ≥ 1 be the largest possible digit.
Define bk :=S(ak). By hypothesis, bk is bkak+O(ak). Let n ≥ 1 be an integer.
There is a unique k ≥ 0 such that ak ≤ n < ak+1. Thus, the greedy-algorithm

representation of n is of the form
∑k

i=0 diai with dk > 0. Define the arith-

metic function R(n) as
∑k

i=0 diS(ai). We may observe that R(n) = R(dkak) +
R(n−dkak). Also, by application of Theorem 1, we see that R(n) = bkn+O(n).

Now, by strong induction on k, we prove that 0 ≤ S(n) − R(n) < Mn,
where M is a real number greater than both a1/2 and d+. If k = 0, i.e.,
if a0=1 ≤ n < a1, then S(n)=n(n+1)/2, while R(n)=R(n · a0)=n · S(a0)=n.
Hence, 0 ≤ S(n) − R(n) ≤ n(n − 1)/2 < na1/2 < Mn. Assume 0 ≤ S(j) −
R(j) < Mj holds for all j less than ak and let n be an integer satisfying
ak ≤ n < ak+1. There is a unique integer d in [1, d+] satisfying dak ≤ n <
(d+1)ak. So we may express the difference S(n)−R(n) as S(dak)+d(n−dak)+
S(n− dak)−

(
R(dak) +R(n− dak)

)
. Hence, by the inductive hypothesis,

L ≤ S(n)−R(n) < L+M (n− dak), (10)

where L = S(dak) − dS(ak) + d(n − dak). By Lemma 2, L is equal to the sum
d(d − 1)ak/2 + d(n − dak). As both summands in L are nonnegative, we find
that 0 ≤ S(n)−R(n). Now L+M (n− dak) = d(d− 1)ak/2+ (d+M )(n− dak),
which, as n − dak < ak and M > d+, is < d(d − 1)ak/2 + dak +Mn− d2ak =
Mn−(d2−d)ak/2 ≤ Mn. Hence, S(n)−R(n) = O(n) and, asR(n) = bkn+O(n),
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we conclude that S(n) = bkn +O(n). As ai ∼ aαi for some a > 0, we see that

aαk ∼ ak ≤ n =

k∑
i=0

diai ∼ a

k∑
i=0

diα
i <

ad+α

α− 1
αk,

which implies that logn = k logα+O(1) as k → ∞. Thus, k = logn/ logα+O(1)
so that S(n) = (b/ logα)n logn+O(n). �

We sketch out another proof of the fact that S(n)−R(n) is O(n). It relies on
an exact formula for SA(n) used in the first lines of the proof of Lemma 2 of [5],
generalized in (3.5) of [16] and corrected in (2.1) of [13].

T h e s e c o n d p r o o f o f T h e o r e m 2. We have, relying on the fact some
truncations of the greedy algorithm’s representation of an integer remain greedy
representations, that

S(n) = S

(
k∑

i=0

diai

)
=

k∑
j=0

⎛
⎝S

(
k∑

i=j

diai

)
−S

(
k∑

i=j+1

diai

)⎞⎠

=

k∑
j=0

∑
m<djaj

s

(
m+

∑
j<i≤k

diai

)

=

k∑
j=0

∑
m<djaj

(
s(m) +

∑
j<i≤k

di

)

=

k∑
j=0

(
S(djaj) + djaj

∑
j<i≤k

di

)
= R(n) +H(n),

where, by Lemma 2, H(n) =
∑k

j=0 djaj
(
(dj − 1)/2 +

∑
j<i≤k di

)
.

Now

H(n) ≤
k∑

j=0

d+aj
(
d++ (k − j)d+

)
 k∑
j=0

aj(k − j) 

k∑

j=0

αj(k − j).

As seen at the end of the proof of Theorem 1, the latter sum is 
 αk.
But αk 
 ak ≤ n. �

Thus, in order to show that SA(n) = cAn logn+O(n) for some classes of re-
currences A, we will need to prove that bk := SA(ak) is equal to bkak + O(ak).
To be able to do so in some generality we will require, in the following section,
that A be special, although the last section of our paper shows the method
applies to other cases as well.
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3. Application of the method to special recurrences

We begin by proving a couple of lemmas that guarantee the existence of a sim-
ple dominant zero α in any special2 polynomial f and that the characteristic
polynomial of any special recurrence annihilated by f must have α as a zero.
These lemmas are very close to Lemma 3.1 of [10]. Our proofs differ and
we include them so our text be self-contained.

����� 3� Suppose f(x) = xm − P1x
m−1 − P2x

m−2 − · · · − Pm is a polynomial
of degree m ≥ 1, where the Pi’s are nonnegative integers,

∑m
i=1 Pi ≥ 2 and some

Pj , 1 ≤ j ≤ m, j odd, is nonzero. Then f has a simple dominant real zero α > 1.

P r o o f. By Descartes’ rule of signs f(x) has a unique positive real zero α.

If Pi = 0, for all i, i �= j, then Pj ≥ 2 and αm = Pjα
m−j implies α = P

1/j
j > 1.

Otherwise, αm > Pjα
m−j . Thus, αj > Pj ≥ 1. Thus, in all cases, α > 1.

Note that αf ′(α)− Pm equals

mαm − (m− 1)P1α
m−1 − (m− 2)P2α

m−2 − · · · − Pm−1α− Pm > mf(α) = 0.

Hence, αf ′(α) > Pm ≥ 0. Therefore, f ′(α) is positive and α is a simple zero.
Also, if x > α, then f(x) > 0. Suppose z is another zero of f of modulus ρ.
Then, by the triangular inequality, ρm ≤ ∑m

i=1 Piρ
m−i, where this inequal-

ity is strict if z is nonreal. However, if ρ > α, then f(ρ) > 0 so that ρm >∑m
i=1 Piρ

m−i, contradicting the previous inequality. If ρ = α, then f(ρ) = 0
and ρm =

∑m
i=1 Piρ

m−i so we still get a contradiction unless z = −α. But
(−1)mαm =

∑
Pi(−1)m−iαm−i implies that αm =

∑
Pi(−1)iαm−i which may

only happen if Pi were 0 for all odd i’s. But Pj > 0. �

����� 4� Let f(x) = xm − P1x
m−1 − P2x

m−2 − · · · − Pm, where the Pi’s are
nonnegative integers,

∑m
i=1 Pi ≥ 2 and some Pj , 1 ≤ j ≤ m, j odd, is nonzero.

Let A = (ak)k≥0 be a linear recurring sequence annihilated by f . If the initial
values a0, . . . , am−1 of A are positive, then there is a positive constant a such
that, as k tends to infinity,

ak ∼ aαk, where α is the dominant zero of f.

P r o o f. By Lemma 3, f has a simple dominant zero α > 1 and f ′(α) > 0. Define

g(x) :=
∑m−1

i=0 Qix
m−1−i as the cofactor of x−α in f(x), i.e., f(x) = (x−α)g(x).

Solving for the Qi’s in terms of the Pi’s we get that Q0 = 1 and, for i ≥ 1,
−αQi−1 + Qi = −Pi. Therefore, we find recursively that Qi = αi − P1α

i−1 −
P2α

i−2−· · ·−Pi. Thus, as α
m−iQi = Pi+1α

m−i−1+Pi+2α
m−i−2+ · · ·+Pm ≥ 0,

2As defined in (8).
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Qi ≥ 0, for all i, 1 ≤ i < m. Now, as ak = aαk + rk, where rk is annihilated
by g, we see that

af ′(α) = a

m∏
i=2

(α−αi) = ag(α) = a

m−1∑
i=0

Qiα
i =

m−1∑
i=0

Qi(ai− ri) =

m−1∑
i=0

Qiai > 0,

implies a > 0, where the αi’s are the zeros of g. �


����� 1� Take f(x) = x3−2x2−2x−3 = (x2+x+1)(x−3) with dominant
zero α = 3. Choose any recurring sequence A annihilated by x2 + x + 1 with
a0 and a1 positive. Then a2 < 0. Indeed, otherwise, as A is annihilated by f,
Lemma 4 would imply ak ∼ a3k for some a > 0. Of course, as x2 + x + 1
annihilates (ak), we see directly that a2 = −a1 − a0 < 0.

Again we define bk as S(ak), for all k ≥ 0. Here, A = (ak)k≥0 is a special
recurrence annihilated by the (special) polynomial

f(x) = xm − P1x
m−1 − P2x

m−2 + · · · − Pm.

����� 5� We have the general identity valid for all j, 1 ≤ j ≤ m, and all
k ≥ j − 1,

S

(
m∑
i=j

Piak+m−i

)
= Pjbk+m−j + 0.5Pj(Pj − 1)ak+m−j

+ Pj

∑
j<i≤m

Piak+m−i + S

( ∑
j<i≤m

Piak+m−i

)
.

P r o o f. The key point is to show the nonnegativity of the expression

(P1 − Pj)ak+m−j + (P2 − Pj+1)ak+m−j−1 + · · ·+ (Pm−j+1 − Pm)ak. (11)

The sum of the first two terms of (11) satisfies

(P1 − Pj)ak+m−j + (P2 − Pj+1)ak+m−j−1 ≥ (P1 + P2 − Pj − Pj+1)ak+m−j−1,

a nonnegative number because f is special. Therefore, the sum of the first three
terms is ≥ (P1 + P2 + P3 − Pj − Pj+1 − Pj+2)ak+m−j−2 again a nonnegative
number. Adding one more term at a time, we end up with the nonnegative lower
bound (P1+P2+· · ·+Pm−j+1−Pj−Pj+1−· · ·−Pm)ak of (11) proving the point.

Now suppose n satisfies Pjak+m−j ≤ n < Pjak+m−j +
∑m

i=j+1 Piak+m−i.

Adding (11) to Pjak+m−j +
∑m

i=j+1Piak+m−i yields(
Pj + (P1 − Pj)

)
ak+m−j +

(
Pj+1 + (P2 − Pj+1)

)
ak+m−j−1

+ · · ·+ (Pm + (Pm−j+1 − Pm)
)
ak,
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which is P1ak+m−j +P2ak+m−j−1 + · · ·+Pm−j+1ak, a quantity bounded above
by ak+m−j+1 = P1ak+m−j + P2ak+m−j−1 + · · ·+ Pmak−j+1. Therefore, we find
that s(n) = Pj + s(n−Pjak+m−j). Thus, summing over all such n’s, we see that

S

(
m∑
i=j

Piak+m−i

)
= S(Pjak+m−j) + Pj

m∑
i=j+1

Piak+m−i + S

(
m∑

i=j+1

Piak+m−i

)
,

which using Lemma 2 on the term S(Pjak+m−j) yields the lemma. �

This allows us to state a first theorem which gives the exact recursion followed
by the sequence (bk).

����	�� 3� Suppose (ak)k≥0 is a special recurrence annihilated by f(x) =
xm − P1x

m−1 − P2x
m−2 − · · · − Pm. Then, for all k ≥ m − 1, the terms of the

two sequences (ak) and (bk) satisfy the equation

f(E) · bk =
1

2

m∑
j=1

(
Pj(Pj − 1)ak+m−j + 2Pj

∑
j<i≤m

Piak+m−i

)
. (12)

Hence, the sequence (bk)k≥m−1 is an integral linear recurrent sequence annihi-
lated by f2.

Writing f(x) as x−α, x2−Px−Q and x3−Px2−Qx−R for m respectively
equal to 1, 2 and 3, equation (12) takes, in those respective cases, the simpler
explicit forms

2f(E)·bk =

⎧⎪⎨
⎪⎩
α(α− 1)ak,

P (P − 1)ak+1 + 2PQak +Q(Q− 1)ak,

P (P − 1)ak+2 +Q(2P +Q− 1)ak+1 + R(2Q+ 2P + R− 1)ak.

(13)

P r o o f. The identity (12) is obtained by iterating Lemma 5 for j = 1, then
j = 2 till j = m and putting all (bk) terms on the LHS. �

����	�� 4� Let f(x) = xm − P1x
m−1 − P2x

m−2 − · · · − Pm be a special poly-
nomial as defined in (8). Suppose A = (ak)k≥0, a0 = 1 < a1 ≤ · · · ≤ am−1 is

an integral linear recurrence annihilated by f. Then

SA(n) = cAn logn+O(n) with cA =

∑m
�=1 P�

(
P� − 1 + 2

∑
1≤j<� Pj

)
αm−�

2αf ′(α) logα
,

(14)
where α is the dominant zero and f ′ the derivative of f .
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P r o o f. By Lemma 3, f has a simple dominant zero α > 1. By Lemma 4, there
is a positive constant a such that ak ∼ aαk as k tends to +∞. Because the
coefficients of the various ak+m−i on the RHS of (12) are all nonnegative and
not all zero, the RHS of (12) is of the form λαk + o(αk) for some positive λ.
Hence, (x− α)2 must be a factor of the characteristic polynomial of (bk). Since
the dominant zero of f is the dominant double zero of f2, which annihilates
(bk), there is a positive constant c such that bk = ckαk + O(ak) as k tends
to +∞. Hence, by Theorem 2, SA(n) = cAn logn+ O(n) with cA = c/(a logα).
To find out the value of c/a, we compare both sides of (12). If Δ represents
the derivation operator, then kαk = α(Δxk)|x=α. Thus, as E and Δ commute,
f(E) · bk ∼ f(E) · cα(Δxk)|x=α = cα

(
Δ · f(E)

)
xk|x=α = cα Δ

(
xkf(x)

)|x=α =

cα
(
kαk−1f(α)+αkf ′(α)

)
= 0+cαf ′(α)·αk. On the other hand, the RHS of (12)

is asymptotically equivalent to

a

2

m∑
j=1

(
Pj(Pj − 1)αm−j + 2Pj

m∑
i=j+1

Piα
m−i

)
αk. (15)

Therefore, comparing (15) to cαf ′(α) · αk and solving for c/a yields

cA =

∑m
j=1

(
Pj(Pj − 1)αm−j + 2Pj

∑m
i=j+1 Piα

m−i
)

2αf ′(α) logα
.

But the coefficient of αm−� in
∑m

j=1

(
Pj(Pj − 1)αm−j + 2Pj

∑m
i=j+1 Piα

m−i
)

being P�(P� − 1) +
∑

1≤j≤�−1 2PjP� the expression for cA given in the theorem
follows. �

��	��	� 6� The value of cA in Theorem 4 is independent of the choice of the
ai, 1 ≤ i < m, as long as am−1 ≥ am−2 ≥ · · · ≥ a1 > a0 = 1.

4. Search of the minimal constant cA
for special recurrences of order ≤ 3

In this section, we determine the least constant cA, as A varies through all
special recurrences of order less than, or equal to m, for 1 ≤ m ≤ 3.

Thus, A = (ak)k≥0 is assumed to be a special recurrence of order ≤ m
annihilated by the special polynomial f(x) = xm−P1x

m−1−P2x
m−2−· · ·−Pm

of degree m whose dominant zero is denoted by α.

Case 1. The first-order recurrences.

If A = (ak)k≥0 is a first-order special recurrence, then, by equation (14),
cA = (α− 1)/(2 logα). The function x → (x− 1)/ logx is increasing on ]1,+∞[.
Thus, the least cA corresponds to α = 2. It is (2 log 2)−1 � 0.721.

137



CHRISTIAN BALLOT

Case 2. Special recurrences at most of the second order.

In this particular case, we re-state Theorem 4 as a corollary.

��	��	� 7� If A = (ak)k≥0 satisfies ak+2 = Pak+1 + Qak for all k ≥ 0,
where P ≥ Q ≥ 0, P +Q ≥ 2, a0 = 1 and a1 > 1 are integers, then

SA(n) = cAn logn+O(n), with cA =
P (P − 1)α+Q(Q− 1) + 2PQ

2α
√
D logα

, (16)

and D = P 2 + 4Q.

Note that if Q = 0, then as P ≥ 2 we may choose a1 = P and A is the
geometric sequence (P k)k≥0. In that case, we recover the fact that SA(n) =

cAn logn+O(n) with cA = (P −1)/(2 logP ), since Q = 0 implies α = P =
√
D.

In [3] we had wondered whether the most economical recurrence-based nu-
meration system, taking the size of the constant cA as our gross criterion,
took place for the Zeckendorf representation, i.e., the representation derived
from ak = Fk+2. This appears to be true at least within the class of spe-
cial second-order recurrences. Note that for ak = Fk+2, we may recover that
cA = cF = (γ

√
5 log γ)−1 � 0.574 using Corollary 7.

��	��	� 8� The minimal cA, as A varies through all the first-order and
second-order special recurrences is achieved when ak = Fk+2, where Fk is the
kth Fibonacci number.

P r o o f. By (16), we need to show the inequality

2α
√
D logα ≤ (γ

√
5 log γ)

(
P (P − 1)α+Q(Q− 1) + 2PQ

)
. (17)

Suppose P ≥ 8. AsQ ≤ P ≤ P 2, we claim that the LHS of (17) is bounded above

by (γ
√
5 log γ)P (P − 1)α. Indeed,

√
D ≤ P

√
5 and α ≤ Pγ, so 2α

√
D logα ≤

2αP
√
5 log(Pγ). Hence, our claim holds if

log(Pγ)

log γ
≤ γ

2
(P − 1),

which is true for all P ≥ 8. The twenty-seven remaining values of cA with
1 ≤ Q ≤ P ≤ 7, excluding P = Q = 1, are easily checked to satisfy (17)
with some mathematical software. (If Q = 0, then cA = (P − 1)/(2 logP ),
where an = Pn, P ≥ 2. We saw that cA ≥ (2 log 2)−1 � 0.721, which is larger
than cF .) �
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Table 1. cA(P,Q) for 1 ≤ Q ≤ P ≤ 5.

P
∖
Q 1 2 3 4 5

1 0.574 * * * *
2 0.733 0.813 * * *
3 0.907 0.948 1.009 * *
4 1.076 1.097 1.135 1.185 *
5 1.236 1.247 1.272 1.306 1.348

We provide the values of cA rounded up to the nearest third decimal place
for P and Q positive and at most five.

����	� 1� The Lucas numbers Ln, defined by L0 = 2, L1 = 1 and Ln+2 =
Ln+1+Ln, would also yield cL = cF by Corollary 6 provided we took an = Ln+1,
n ≥ 0.

Case 3. Special recurrences at most of the third order.

Here we assume that A = (ak)k≥0 is at most a third-order linear recurrence
with a2 ≥ a1 > a0 = 1 integral and, for all k ≥ 0, ak+3 = Pak+2+Qak+1+Rak,
where P ≥ 1, Q ≥ 0, R ≥ 0 are integers that satisfy P + Q + R ≥ 2 and
P ≥ max {Q,R}. We restate Theorem 4 for these recurrences in a corollary.

��	��	� 9� Let f(x) = x3−Px2−Qx−R be a special polynomial. Suppose
A = (ak)k≥0 is an integral recurrence annihilated by the polynomial f . Assume
a0 = 1 and a2 ≥ a1 > 1. Then SA(n) = cAn logn+O(n), where

cA =
P (P − 1)α2 + 2PQα+Q(Q− 1)α+ 2R(P +Q) +R(R− 1)

2αf ′(α) logα
, (18)

with f ′ and α, respectively, the derivative and the dominant zero of f .

Now we find the recurrence f which provides the least constant cf .

��	��	� 10� The minimal cA, as A varies through all recurrences that sat-
isfy a2 ≥ a1 > a0 = 1 and are annihilated by some special characteristic polyno-
mials x3 − Px2 −Qx− R is achieved when ak = Nk+4, where N0 = 0, N1 = 0,
N2 = 1 and Nk+3 = Nk+2 +Nk, i.e., when A is the Narayana sequence.3

P r o o f. If P = R = 1 and Q = 0, then cA = cN = (ηf ′(η) log η)−1, where
η � 1.46557 is the dominant zero of x3 − x2 − 1. We find that cN � 0.508. The
value of cN is less than cF proving the truth of the theorem with regard to the
first and the second-order recurrences of Corollary 7. So we may assume R ≥ 1.

3See [1] for historic background on this sequence; its code number in the OEIS, [19], is A000930.
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By (18), it suffices to show the inequality

2αf ′(α) logα, i.e., 2α(3α2 − 2Pα−Q) logα ≤ c−1
N P (P − 1)α2,

or more simply to show that

(6α− 4P ) logα ≤ c−1
N P (P − 1). (19)

Because α > 1, we obtain α3 = Pα2 +Qα+R ≤ P (α2 +α+1) ≤ 3Pα2 so that
α ≤ 3P . Thus, (6α − 4P ) logα ≤ 14P log(3P ). Hence, to prove (19) it suffices
to have 14cN(log 3 + logP ) ≤ P − 1,

which is true for all P ≥ 34. The remaining values of cA for P ≤ 33, 0 ≤ Q ≤ P
and 1 ≤ R ≤ P are finitely many and a program tells us they all exceed cN .
(Of course, there are many ways to reduce further the numerical search.
For instance, one can observe that α ≤ 3P implies that α3 ≤ Pα2 +3PQ+R ≤
Pα2 + 3P 2 + P 2 < (P + 4)α2, since α > P . Thus, α < P + 4. Hence, (6α −
4P ) logα < (24 + 2P ) log(P + 4). So it suffices to have P − 1 ≥
cN (24/P + 2) log(P + 4) for (19) to hold. But this latter inequality holds for

all P ≥ 8. This leaves only
∑7

i=1 i(i + 1) = 168 values of cA to compute and
compare to cN .) �

We provide a couple of tables, one with Q = 0, another with Q = 1, with
all cf ’s rounded up to the nearest third decimal for all special polynomials f(x) =
x3 − Px2 −Qx−R when P does not exceed five.

Table 2. cA(P,Q = 0, R) for 1 ≤ R ≤ P ≤ 5.

P
∖
R 1 2 3 4 5

1 0.508 * * * *
2 0.682 0.718 * * *
3 0.883 0.884 0.903 * *
4 1.065 1.060 1.063 1.074 *
5 1.232 1.226 1.225 1.229 1.235

Table 3. cA(P,Q = 1, R) for 1 ≤ R ≤ P ≤ 5.

P
∖
R 1 2 3 4 5

1 0.626 * * * *
2 0.740 0.779 * * *
3 0.902 0.913 0.935 * *
4 1.069 1.070 1.078 1.092 *
5 1.230 1.229 1.231 1.237 1.245
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����	� 2� Beyond cN , it seems that cF and ct are respectively the second
and the third least constants cA among all constants considered in Corollary 10.
We have ct � 0.626, where (tn) is the shift of the tribonacci sequence with initial
values 1, 2 and 4. We also have that the dominant zeros αN , αF and αt of the
characteristic polynomials of the Narayana, Fibonacci and tribonacci sequences
satisfy αN < αF < αt. However, it is not true always that αu < αv implies
cu < cv. For instance,

αx3−4x2−1 < αx3−4x2−2, but cx3−4x2−1 > cx3−4x2−2

as Table 2 shows.

5. Conjectured minimal constants
for general order special recurrences

This section focuses on a family of recurrences of which a study was made
in [4]. This family was also shown [8] to provide a general unique integer represen-
tation with positive and negative summands which generalizes the far-difference
representation of Fibonacci numbers [2].

Let q ≥ 1 be an integer and G = (gk)k≥0 be the fundamental sequence
of f(x) = xq − xq−1 − 1. That is, gk+q = gk+q−1 + gk, k ≥ 0, and the initial val-
ues of G are 0, . . . , 0, 1, 1, . . . , 1, 2, with q − 1 initial zeros followed by q ones.
Then we consider A = (ak)k≥0 defined by ak = g2q−2+k. The sequence A
is a shift of G that starts with the last term of the sequence G equal to 1.
Note that for q = 1, 2 and 3, ak is respectively 2k, Fk+2 and Nk+4.

We conjecture that cq is the least constant cA when A varies through all
recurrences of order at most q that satisfy Theorem 4. We saw this is true if
q = 1, 2 and 3. The method used to prove the cases q = 1, 2 and 3 could be used
for any specific q, but would leave some numerical verification for small values
of the coefficients. It cannot provide a proof for all q.

In this section, we are curious of the behavior of cq as q tends to infinity.
We begin with an estimate of the dominant zero of f(x) and use the notation
log2 x to denote log log x.

����� 11� The dominant zero α of xq − xq−1 − 1 satisfies

1 +
log q

q
− log2 q

q
+

log22 q

q log q
> α ≥ 1 +

log q

q
− log2 q

q
,

where the leftmost inequality holds for q large enough and the rightmost inequality
is valid for all q ≥ 3.
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P r o o f. By Lemma 3, f(x) has a simple dominant zero α > 1. Assume q ≥ 3
and define

ν :=
log2 q

log q
log q

and ω :=
log2 q

log q
.

Put α = 1 + ε and, reasoning by contradiction, assume ε < log q
(1+ν)q . Then

1 = (1 + ε)q−1ε < (1 + ε)q−1 log q

(1 + ν)q
, so that

(1 + ν)q

log q
< (1 + ε)q−1.

Taking logarithms yields

log
(
(1 + ν)q

)− log2 q < (q − 1)ε <
log q

1 + ν
.

Hence,

log(1 + ν) +
ν

1 + ν
log q < log2 q.

As log(1 + ν) > 0 for q ≥ 3, this implies
ν

1 + ν
log q < log2 q,

which, since ν/(1 + ν) = log2 q/ log q, leads to 1 < 1. Therefore, for all q ≥ 3,

α ≥ 1 +
log q

(1 + ν)q
= 1 +

log q

q
− log2 q

q
.

Put xq = 1 + log q
(1+ω)q . Note that f(xq) = yq − 1, where yq = xq−1

q (xq − 1).

We will see that for q large enough yq > 1, which as α is the only positive zero

of f proves that xq > α. Because xq < 1 + log q
q (1− ω + ω2), we will obtain the

first inequality of the lemma. Now

log
xqyq
xq − 1

= q log xq =
log q

1 + ω
+O

(
log2 q

q

)
.

Thus,

xqyq
xq − 1

= elog q
(
1−ω+ω2(1+o(1))

)
+O
(

log2 q
q

)
=

q

log q
e

log22 q

log q

(
1+o(1)

)
.

Therefore,
yq =

1

1 + ω
· 1

1 + log q
(1+ω)q

· e
log22 q

log q

(
1+o(1)

)
,

which, as log q
q and ω are both o

( log2
2 q

log q

)
, yields that

yq = 1 +
log22 q

log q

(
1 + o(1)

)
> 1, when q → ∞.

�
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����	�� 5� Let q ≥ 1. If A is the shift of the sequence G defined above,
we find that

SA(n) = cq n logn+O(n), where cq = (αf ′(α) logα)−1,

α is the dominant zero of f(x) = xq − xq−1 − 1 and f ′ is the derivative of f.
Moreover, the constants cq become arbitrarily small as q tends to infinity. In fact,

cq ∼ (log q)−1, as q → +∞. (20)

P r o o f. Note that xq−xq−1−1 is a special polynomial as defined right after (8).
Thus, the hypotheses of Theorem 4 hold. The statement on the asymptotics of
SA follows and the value of cq is obtained by setting P1 = Pq = 1 and all
other Pi’s equal to 0 with m = q in formula (14). Expressing αf ′(α) in terms
of f(α) = αq − αq−1 − 1, we obtain αf ′(α) = qαq − (q − 1)αq−1 = q + αq−1.
Therefore, for all q ≥ 1, we find that

cq =
(
(αq−1 + q) logα

)−1
.

Thus, we need to show that (αq−1 + q) logα ∼ log q as q tends to infinity.
By Lemma 11, for q large enough we find that

αq−1 < αq = eq logα < elog q−log2 q+εq log2 q =
q

log q
logεq q,

where 0 ≤ εq < log2 q
log q . As log(logεq q) = εq log2 q → 0 with q → ∞, we see that

αq−1 < q
(
1 + o(1)

)
/ log q. Therefore, we conclude that

(αq−1 + q) logα ∼ q logα ∼ q · log q
q

= log q, as q → +∞.

�

Numerical data. We compare cq and log−1 q in a small table, rounded up
to the nearest third decimal place, for some q’s. The values of cq log q seem to
increase steadily as q varies from 2 to 119 surpassing 1 at about q = 40 and,
perhaps somewhat surprisingly in view of the fact that cq ∼ (log q)−1, reaching
� 1.058 when q = 119.

Table 4.

q 3 4 5 6 7 30 60 99 119
cq 0.508 0.468 0.440 0.419 0.403 0.288 0.251 0.229 0.221

log−1 q 0.910 0.721 0.621 0.558 0.514 0.294 0.244 0.218 0.209
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6. Further results
on non-special recurrences close to special ones

We open this section with two lemmas and a theorem which, among other
applications, show a certain degree of stability in the value of the constant cA
under small variations of A off from a special recurrence.

����� 12� Suppose α1, . . . , αm−1 are complex numbers with |αi| < θ < α,
1 ≤ i ≤ m− 1, where α > θ > 1 are real numbers. Assume (sk)k≥0 and (rk)k≥0

are complex sequences satisfying

(E−α1I)◦(E−α2I)◦· · ·◦(E−αm−1I)◦(E−αI) ·sk = rk, where rk = O(θk).

Then, for all k ≥ 1,

sk = s0α
k + αk−1t0 + αk−2t1 + · · ·+ tk−1, where tk = O(θk). (21)

P r o o f. First we observe that if (E−βI)·sk=rk, where |β|<θ, then sk=O(θk).
Indeed, using inductively the relation sk+1 = βsk + rk, one sees that a solution
to (E − βI) · sk = rk satisfies

sk =βks0 + βk−1r0 + βk−2r1 + · · ·+ rk−1, (22)

for all k ≥ 1. If |rk| ≤ Bθk, for k ≥ 0, then

|sk| ≤|s0||β|k +B(|β|k−1 + θ|β|k−2 + · · ·+ θk−1).

But
k−1∑
i=0

θk−1−i|β|i ≤ θk−1
∑
i≥0

(|β|/θ)i = O(θk).

For j = 1, . . . ,m − 1, put s
(j)
k := the solution to

∏j
i=1(E − αiI) · s(j)k = rk.

Then

(E − α1I) · s(1)k = rk,

(E − α2I) · s(2)k = s
(1)
k ,

...
...

(E − αm−1I) · s(m−1)
k = s

(m−2)
k ,

(E − αI) · sk = s
(m−1)
k .

But

s
(1)
k = O(θk) =⇒ s

(2)
k = O(θk) =⇒ · · · =⇒ s

(m−1)
k = O(θk).

Now, by (22), (E − αI) · sk = s
(m−1)
k implies (21) with tk = s

(m−1)
k . �
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����� 13� Suppose A = (ak)k≥0 is a real-valued linear recurrent sequence with
ak ∼ aαk, as k tends to infinity, where α > 1 and a �= 0 are real numbers.
Let (sk)k≥0 and (rk)k≥0 be two sequences of real numbers satisfying

g(E) · sk = λak + rk, (23)

where g is a polynomial over the reals with simple dominant zero α, λ �= 0
and rk = O(θk) for some θ less than α but larger than the moduli of the other
zeros of g. Then

sk = bkαk + cαk +O(θk) + (αk−1t0 + αk−2t1 + · · ·+ tk−1), (24)

for some nonzero b, some constant c and some sequence (tk) with tk = O(θk).

P r o o f. Since ak ∼ aαk we infer that the characteristic polynomial f of A is
of the form (x − α)(x), where the zeros of  have moduli less than α. Any
solution (sk) to (23) is the sum of a solution (xk) to g(E) · xk = λak and
a solution (yk) to g(E) · yk = rk. A solution to g(E) · xk = λak must be a linear
recurrence of the form bkαk + c1α

k + O(θk) for a nonzero b, because (xk) is
annihilated by fg, but not by g. The solution to g(E) · yk = rk is of the type
yk = y0α

k + αk−1t0 +αk−2t1 + · · ·+ tk−1 by Lemma 12. The result follows. �

The next theorem may be seen as a further generalization of our main theo-
rems, Theorems 3 and 4, on special recurrences.

����	�� 6� Let A = (ak)k≥0 be a nondecreasing integral linear recurrent se-
quence with 1 = a0 < a1 ≤ · · · ≤ am−1 and ak ∼ aαk, as k tends to infinity,
for some real numbers α > 1 and a > 0. Suppose

g(E) · bk = λak + rk, (25)

where g is a polynomial over the integers with simple dominant zero α, bk =
SA(ak), |rk| is bounded above by Bθk, for some real number θ < α but larger
than the moduli of the other zeros of g and of the characteristic polynomial of A,
and λ > 0. Then

SA(n) = cAn logn+O(n), where cA = λ(αg′(α) logα)−1. (26)

P r o o f. By Lemma 13, bk = bkαk+cαk+O(θk)+(αk−1t0+αk−2t1+ · · ·+tk−1)
with tk = O(θk) and b positive in this context. Clearly, g(E) · O(θk) = O(θk)
and g(E) · αk = 0. Now if zk = αk−1t0 + αk−2t1 + · · ·+ tk−1, then

(E − αI) · zk = zk+1 − αzk

= (αkt0 + αk−1t1 + · · ·+ tk)− (αkt0 + · · ·+ αtk−1) = tk.
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Thus, g(E) · zk = O(θk). Hence, because rk = o(αk) and ak ∼ aαk, we must
have, by (25), g(E) · bkαk = λaαk. Indeed, as seen in the proof of Theorem 4,

g(E) · (kαk) = αg′(α)αk.

Thus, bαg′(α) = λa. We saw in the proof of Lemma 12 that the expression in (21)
is O(θk); the same argument gives that zk = O(αk). Hence, bk = (b/a)kak +
O(ak) and we find, by Theorem 2, that our claim holds with cA = b/(a logα). �

We turn to families of the non-special second-order recurrences, which include
ak = 2k+1 − 1, yet fall under our method. Again we define bk as S(ak).

��	��	� 14� Let α ≥ 2 be an integer. Suppose the sequence A = (ak)k≥0,
with a1 integral and a1 > a0 = 1, is annihilated by x2 − (α+ 1)x+ α. Then

SA(n) =
α− 1

2 logα
· n logn+O(n).

P r o o f. A simple induction would show that (ak)k≥0 is increasing. Then we
note that ak+1 = αak + (a1 − α) for all k ≥ 0. If a1 = α, then we fall back on
the well-known geometric case. So assume first a1 > α. Suppose ak ≤ n < ak+1.
If αak ≤ n < ak+1, then s(n) = α+ s(n− αak). Thus, we see that

bk+1 = S(αak) +K,

where K is the constant α(a1 − α) + S(a1 − α). Using Lemma 2, this leads to

bk+1 − αbk = 0.5α(α− 1)ak +K, (27)

for all k ≥ 1. The conclusion comes from Theorem 6 with a constant cA equal
to 0.5α(α− 1)(α logα)−1.

If 1 < a1 < α, then instead we find that bk+1=S(αak)−
∑

i<α−a1
s(i+ ak+1).

Because Lemma 2 assumes αak ≤ ak+1, it would be wrong to conclude that (27)
held with K negative and equal to −(α − a1) − S(α − a1). However, the er-
ror we make in writing S(αak) = 0.5α(α − 1)ak + αbk only comes from the
last α − a1 integers before αak. For an integer n, ak ≤ n < ak+1, we see
that 1 ≤ s(n) < (k + 1)d+, where d+ is the maximal digit that may occur; see
Lemma 1. Hence, the difference between bk+1 and 0.5α(α−1)ak+αbk is at most
K + (α− a1)(k+2)d+. Hence, bk+1 −αbk = 0.5α(α− 1)ak + rk with rk = O(k).
We conclude again with Theorem 6. �

��	��	� 15� Let α ≥ 2 be an integer. Suppose the sequence A = (ak)k≥0,
with a1 > a0 = 1 integral, is annihilated by x2 − (α− 1)x− α. Then

SA(n) =
α− 1

2 logα
· n logn+O(n).
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P r o o f. The sequence A is seen to be increasing. Moreover, ak+1 = αak +
(−1)k(a1 − α). Suppose k is even and a1 > α, or k is odd and a1 < α. Thus,
ak+1 = αak+|a1−α|. Hence, by Lemma 2, bk+1 = S(αak)+K = 0.5α(α−1)ak+
αbk+K, where K is the constant α|a1−α|+S(|a1−α|). In the other cases, i.e.,
k odd and a1 > α, or k even and a1 < α, we find that ak+1 = αak − |a1 − α|.
Thus, bk+1 = S(αak)−K1 with K1 = |a1 − α|+ S(|a1 − α|). By the argument
used in the proof of Corollary 14, we see that |S(αak)− 0.5α(α− 1)ak − αbk| ≤
K1 + (k + 2)d+|a1 − α|. Therefore, for all k and a1 − α, we see that bk+1 =
0.5α(α−1)ak+αbk+ rk, where rk = O(k). Theorem 6 offers the conclusion. �

We gather in a theorem the previous two corollaries.

����	�� 7� Let α ≥ 2 be an integer. Suppose A = (ak)k≥0, with 1 = a0 < a1
integral, is annihilated by x2 − (ε+ α)x+ εα, where ε = ±1. Then

SA(n) =
α− 1

2 logα
· n logn+O(n).

����	� 3� None of the second-order recurrences of Theorem 7 are special.
Interestingly, formula (16) still yields the right constant cA for all the recurrences
of Corollary 15. However, this is not true for recurrences of Corollary 14, e.g.,
for ak = 2k+1 − 1, when putting P = 3, Q = −2, α = 2 and D = 1 in (16) leads
to a wrong value of cA. In any case all second-order recurrences in Theorem 7
are very close to the geometric sequence (αk) with which they share the same
constant cA.

We give a few more typical applications of Theorem 6 with a second-order
and a third-order recurrences with dominant zero 3 and other zeros of moduli
larger than 1, and a fourth-order recurrence with a non-integral dominant zero,
namely the Golden ratio γ.

����	�� 8� For each of the three recurrences A = (ak)k≥0, where

i) ak = 3k+1 − 2k+1; ii) ak = 3k + k2k; and iii) ak = Fk+4 − k − 2,

we find that

SA(n) = cAn logn+O(n),

where

cA =

{
(log 3)−1, in cases i) and ii);

(γ
√
5 log γ)−1 = cF , in the third case.

P r o o f. The three sequences are increasing and have their a0 term equal to 1.
In case i), ak+1 = 3(3k+1 − 2k+1) + 3 · 2k+1 − 2k+2 = 3ak +2k+1. Hence, bk+1 =
S(3ak) + 3 · 2k+1 + S(2k+1). Since 2k+1 < ak+1, we see that s(n) ≤ (k + 1)d+,
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where d+ is the maximal digit that can occur in the numeration based on A,
for all n < 2k+1. Therefore, using Lemma 2, we find that bk+1 − 3bk = 3ak + rk,
where rk = 3 · 2k+1+S(2k+1) = O(θk) with, say, θ = 5/2. We conclude with the
help of Theorem 6. For the second sequence, we find that ak+1 = 3ak− (k−2)2k.
Thus, for k ≥ 2, we have

bk+1 = S(3ak) −
∑

ak+1≤n<3ak

s(n) = S(3ak)−
(
(k − 2)2k + S

(
(k − 2)2k

))
.

As at the end of the proof of Corollary 14, evaluating S(3ak) with Lemma
2 gives 3ak + 3bk + O(k22k), where the error term O(k22k) stems from the
(k − 2)2k largest integers between ak+1 and 3ak whose sum of digits is at most
(k+2)d+ each. Taking into account the two terms −(k−2)2k and −S

(
(k−2)2k

)
,

we obtain that bk+1 − 3bk = 3ak + rk, where, as in case i), rk = O((5/2)k).

For our third sequence, since it is increasing we find that bk+2 = bk+1 +
(ak+2− ak+1)+S(ak+2− ak+1). Since ak ≤ ak+2 − ak+1 = Fk+4− 1 ≤ ak+1 and
there are k integers in the interval [ak, Fk+4 − 1[, we see that S(ak+2 − ak+1) =
bk +O(k(k+1)d+). Hence, bk+2 − bk+1 − bk = ak + k+1+O(k2) = ak +O(θk)
with θ = 3/2 < γ. Again the conclusion comes from Theorem 6. �

We investigate recurrences annihilated by f(x) = x3 − x − 1, a polynomial
which has a substantially smaller dominant zero than special cubics. Though f
is not a special polynomial our method works! As usual bk denotes S(ak).
The constant cA turns out to be much smaller than all constants associated
with the recurrences of Corollary 10.

����	�� 9� Suppose A = (ak)k≥0 is an integral recurrence annihilated by
f(x) = x3 − x− 1 with a0 = 1 < a1 ≤ a2 ≤ a1 + 1 = a3. Then

SA(n) = cAn logn+O(n), where cA =
(
α(α2 − α+ 1)f ′(α) logα

)−1 � 0.440,

α is the dominant zero of f and f ′ is its derivative.

P r o o f. Suppose k ≥ 4. Note that ak+1−ak = (ak−1+ak−2)− (ak−2+ak−3) =
ak−1 − ak−3 = ak−4 < ak. Thus, if ak ≤ n < ak+1, then s(n) = 1 + s(n − ak).
Hence, bk+1 − bk = ak+1 − ak + S(ak+1 − ak). That is bk+1 − bk − bk−4 = ak−4.
Or, for all k ≥ 0,

bk+5 − bk+4 − bk = ak. (28)

That is, g(E) · bk = ak with g(x) = x5 − x4 − 1 = (x2 − x + 1)(x3 − x − 1).
The zeros of x2 − x + 1 are roots of unity and g′(α) = (α2 − α + 1)f ′(α).
Thus, Theorem 6 is applicable and yields the claim. �
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����	� 4� Note that the sequence with a0 = 1, a1 = a2 = 2 is a shift of the
fundamental sequence associated with x3 − x − 1 (i.e., a shift of the Padovan
sequence4) which satisfies the hypotheses of Theorem 9. Formula (18) is not valid
for the Padovan or other sequences satisfying Theorem 9 as putting P = 0 and

Q = R = 1 into (18) yields
(
αf ′(α) logα

)−1
, a larger constant (� 0.629).
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