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ABSTRACT. In this paper we consider an optimization problem for Cesaro
means of bivariate functions. We apply methods from uniform distribution theory,
calculus of variations and ideas from the theory of optimal transport.
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1. Introduction

The systematic study of distribution functions of real valued sequences goes
back to van der Corput [26, 27]. Over the last years these results where extened
to multivariate settings by Strauch and several co-authors; see [I], (2, [8l 23]. These
investigations include the study of the set of all distribution functions of a given
sequence and various optimization problems.

A particularly interesting problem is the study of extremal limits of two-
-dimensional sequences of the form

N
1
n=1
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where (,)nen, (Yn)nen are uniformly distributed (for short u.d.) sequences in
the unit interval and F is a given continuous function on [0, 1]%; see [15].

Let us recall that a sequence (x,)nen of points in [0, 1] is said to be u.d.
if and only if

| XN
lim — Z ligp(zn) =b—a
=1

N—oo N
n

for all intervals [a, b[C [0, 1[, where 15 denotes as usual the indicator function
of the set E. We refer to [, 12, 22] as general references on the subject.
A mapping T of the unit interval into itself is called uniform distribution pre-
serving (for short u.d.p.) if the sequence (T'(z,)), y is w.d. whenever (z,)nen
is a u.d. sequence in [0, 1].
These maps have been extensively studied (see e.g., [4,[16]), also in connection to
variational problems [2I] and extended to compact metric spaces [24]. They are
particularly interesting for the purposes of this paper since they can be thought
of as suitable measure preserving rearrangements of the unit interval, as we will
see in the next section.

It turned out that the study of the asymptotic behaviour of mean values ()
is equivalent to find optimal bounds for Riemann-Stieltjes integrals of the form

/ 1 / Fla,)AC(.y), (2)

where C'is the asymptotic distribution function of the sequence (z,, yn)nen and
is usually referred to as copula (see [7]). More precisely, a 2-copula is a function
C': [0,1]% — [0, 1] satisfying the following properties: for every x,y € [0,1]

C(x,0) = C(0,y) =0,
C(z,1)=2 and C(l,y)=vy,
and for every x1,x2,y1,y2 € [0,1] with 25 > z1 and yo > 3
C(z2,y2) — C(w2,y1) — Clz1,92) + C(z1,91) = 0.

An important property of copulas, which makes the expression in (2]) meaningful
and which can be derived from the above properties, is that every copula C
induces a doubly stochastic measure y¢ (later on denoted by v when there is no
possibility of confusion) on the measurable space ([0, 1], B), via the formula

7([a,b] x [e, d]) =C(b,d) — C(b,c) — C(a,d) + C(a,c).

Moreover, there is a one-to-one correspondence between copulas and doubly
stochastic measures. For every copula C, the measure 7 is doubly stochastic in
the sense that for every Borel set B C [0, 1], v([0, 1] x B) = (B x [0, 1]) = A(B),
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where A is the Lebesgue measure on [0, 1]. Conversely, for every doubly stochastic
measure p, there exists a copula C' given by

C(u,v) = p([0,u] x [0,v]).

From the definition one can notice that a probability measure on ([0, 1]%, B)
with uniform marginals is doubly stochastic. We refer to [6l 1] [14] for details.
Nowadays copulas are very popular in applied probability. In particular, they
are used in financial mathematics for modeling dependency structures among

different kinds of risks; see [3], 13} 17}, 19].

With a slight abuse of notation we write fol fol F(x,y)dC(z,y) for the integral
with respect to the measure 7.

Notice, however, that in the calculation of these integrals one can also take
advantage of the probabilistic interpretation of a copula, as the joint distribution
function of a random vector with uniform marginals. More precisely, consider
a random vector (X7, X2) and suppose that its marginals F} and F3 are contin-
uous. By applying the probability integral transformation to each component,

the random vector
(U1, Uz) = (Fi(X1), Fo(X2))

has uniform marginals. The copula of (X7, X5) is then defined as the joint cu-
mulative distribution function (cdf) of (Uy, Us):

C(ui,uz) = P(Uy < up,Us < uy).

In this setting, the notion of optimal coupling can be stated. Let i, v be two prob-
ability measures on (R, B). Coupling p and v means constructing two random
variables X7, X5 on R in such a way that X, < nand Xo 9 v, with < denoting
equality in distribution. The couple (X7, X5) is called a coupling of (u, ). Now,
if we introduce a cost function ¢(z,y) on R x R, then the problem of finding

inf E(c(X1, X2))

where the pair (X7, X3) runs over all possible couplings of (u,v) is called
c-optimal coupling or Monge-Kantorovich mass transportation problem
(see e.g., [18] 28]). Equivalently, this problem can be stated in terms of mea-

sures,
inf/c(x, y)dP(z,y),

where the infimum runs over all joint probability measures P on R x R with
marginals ¢ and v. For connections of extremal limits and copulas to the theory
of optimal transport we refer to [10].

Throughout this paper we consider the equivalent sup problem

sup{E(c(X1, X2)) | X1, X couplings of 1, v with Px, = pand Px, =v}. (3)
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Furthermore, we focus our attention on couplings between uniform distributions.
In Section 4 we use this approach for solving a specific instance of maximizing
the integral (2J).

A wuseful criterion for checking the optimality of a candidate solution is based
on the notion of c-convexity. A function f: X — R is called c¢-convex if it has a
representation f(z) = sup,{c(x,y) + a(y)}, for some function a. The associated
c-subdifferential of f at x is then defined through:

Oef(x) ={y| () = f(z) = c(z,y) — c(z,y) V2 € X}

and O.f = {(z,y) € X xY |y € 0.f(z)}.
One observes that y € 9.f(z) < Ja(=a(y)) € R such that

Uya(r) = c(z,y) +aly) = f(z) and Py a(8) = c(&y) +aly) < f(), (4)

for every £ € X, see [18].
The dual problem of @] is given by:

I(c) :inf{/hldu+/h2dz/|c<h1+h2, hi € L'(p) and hy ELl(V)},

and its study is the basis of the following theorem.

THEOREM 1 (Th. 4.7 from [18]). Let ¢ be such that c¢(z,y) > a(z) + b(y) for
some a € L*(u), b € L' (v) and assume finiteness of I(c). Then a pair (X1, X2)

with X, 9 1, Xo Ly is an optimal c—coupling between p and v if and only if
(X1,X2) € 0.f a.s.

for some c-convex function f, equivalently, Xo € 0.f(X1) a.s.

2. Main results

As already pointed out in [7], the solution of problem (2]) depends on the sign
of the partial derivative  OF(z,y)

Dy =
2 0xdy

Special cases have been already studied in the literature, like those described in
Fig.1 and Fig. 2. (see [7]). In particular, the upper and lower bounds for the first
case are given precisely by the Fréchet-Hoeffding bounds, while in the second
case the authors provide a criterion [7, Theorem 7] to find the corresponding
extrema.
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(0, 1) (L,1) 0, 1) (L,1)
Dy <0
D> >0 Y
Dy >0
(0,0) (1,0) (0,0) (1,0)
Figure 1. Figure 2.

In this paper we maximize () in the special situation described in Fig. 3 as
a problem of optimal coupling (see [25]) and we provide a criterion for the
instance of Fig. 4.

(0,1) (1,1) (0,1) (1,1)
Dy >0
Dy >0 Do >0
Do <0
Dy <0
(0,0) (1,0) (0,0) (1,0)
Figure 3. Figure 4.

We start by determining the copula which maximizes ([2) when the sign of the
second derivative changes as described in Fig. 4. We apply the following criterion
[T, Theorem 7].

THEOREM 2. Let us assume that a copula C(x,y) mazimizes the integral
fo fo (z,y)dC(z,y). Let [X1, Xz] x [Y1, Ya] be an interval in [0,1]? such that
C(XQ,YQ)—l—C(Xl,Yl)—C(Xl,Yg)—C(XQ,Yl) >0 (5)

and such that for every interior point (x,y) the mized second derivative Do has
constant sign. Then we have:

(i) if Dy > 0, then
C(z,y) = min(C(z, Y2)+C(X1,y)—C(X1,Ys),C(z, Y1) +C(Xa, y) —C(X2, Y1)),
(ii) if Dy < 0, then ©)
C(z,y) = max(C(z,Y2)+C(Xa, y)—C (X2, Y2),C(x, Y1)+ C(X1,y)—C(X1, Y1)),

for every (z,y) € [X1, Xa] x [Y1, Ya). ()
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This result can be illustrated by the following pictures, where the symbols &
and © in a corner mean that the value of C' in that point is taken with positive
and negative sign, respectively.

(X1,Y2)  (z,Y2)  (Xp,Y2) (X1,Y2)  (z,Y2) (X2,Y2)
© & D S
(X1,y) & (X2,y) (X1,9) (X2, y)
(@) C (o)
D S =) 2
(X1,Y1)  (z,Y1) (X2, Y1) (X1,Y1) (Y1) (X2, V1)
Figure 5. Figure 6.

In order to apply this criterion to the case described in Fig. 4 we divide the
unit square [0, 1]% into [0, x1] x [0, 1], [x1, x2] x [0, 1] and [z2, 1] x [0, 1], as can be
seen in Fig. 7.

Then, following the above statement, if = € (0,21) U (x2,1), we apply (@) in the
same way as in Fig. 5 and if x € (21, z2), we apply (@) as in Fig. 6.

Dy >0 Dy <0 Do >0
(()71) (I’l) (xlzl) (le) (IQ’I) (le) (1,1)

S} S D g0 &
0,9 (z.y) A@1,9) (z2, ) (=) . ()

(21, 9) | (z,9) Pl(x2,y)
(0,0) &3] Si[S) S5 S2) g(1,0)
(I’O) (ZEl,O) (:IZ,O) ($270) (:IZ,O)
Figure 7.

Consequently, the following Theorem holds true.
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THEOREM 3. Let 0 <z < x9 <1 and

Fi(z,y) if ze(0,z) Zhew g

O0xdy
2
F(xz,y) = § Fy(z,y) if x€ (21,22), 85;7%4,) <0, (8)
)a : 1 O’ Fs(z,y) 0
3(.’1),11/) Zf T e (x27 )7 dxdy > 0.

Then the copula mazimizing f01 fol F(x,y)dC(z,y) has the form

mm(m,hl(y)) Zf VS [val]v
C(z,y) = max(m + hao(y) — z2, b1 (y)) if € [xy,x2], (9)
min(z — z2 + ha(y),y) if © € [xe,1],

where hy(y) = C(x1,y), and ha(y) = C(x2,y).

As we will see below, this result implies that in an ideal situation the problem
is reduced to the determination of suitable functions h; and hs.

Before going on we need to determine dC(z, y) for the special situation of (@]).
For this reason let us consider the rectangles

(z,y+dy) (z+dz,y+dy) (z —dz,y +dy) (z,y +dy)
(z,9) (z +dz,y) (r —dz,y) (z,y)
Figure 8. Figure 9.

and the — from the copula induced — measures which are defined by
vo(dz,dy) =C(z,y) + C(z + do,y + dy) — C(z,y + dy) — C(z +dz)  (10)
and
vo(dz,dy) =C(x — dz,y) + C(z,y + dy) — C(z — dz,y + dy) — C(x,y), (11)

where (dz, dy) stands for the infinitesimal rectangles from Fig. 8 and Fig. 9.

We consider the three regions in Fig. 7 where the second derivative changes
sign separately.

(i) z € (0,2).
Then z = hy(y) and C(z,y) = min(z, hi(y)). Thus by (0)

ve(dz,dy) = hi(y) + (ha(y) + Ry (y)dy) — ha(y) — hi(y) = hi(y)dy.  (12)

7
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x € (x1,2).
Then & = x5 — ha(y) + ha(y) and C(z,y) = max(x + ha(y) — 22, (y)).
Let us observe that

C(z,y+dy) = max(z + he(y +dy) — x2, h1(y + dy))
= max(h1(y) + hy(y)dy, hu(y) + P (y)dy)
= ha(y) + hy(y)dy,

since for every (x,y) such that = + ha(y) — 22 = h1(y) we have
dz

dx
o + hh(y) = hy(y) and & < 0.

Similarly,
C(z —dz,y) = max(z —dz + ha(y) — 22, h1(y))
= max(h(y) — dz, hi(y)) = I (y),
since dz > 0. Thus from (II]) we have
vo(da,dy) = ha(y) + (hi(y) + ha(y)dy) — ha(y) — hi(y)dy — ha(y)
= (ha(y) — 1 (y))dy. (13)
x € (z2,1). Then
x=mx9—ho(y)+y and C(z,y)=min(x — zo + ha(y),y).
Let us observe that
C(x +dz,y + dy) =min(z + dz — 22 + hao(y + dy),y + dy)
=min(y + dz + hy(y)dy, y + dy) =y + dy,

since for every (z,y) such that x—zo+hs(y) = y we have dz+h) (y)dy = dy.
Moreover,

C(z,y +dy) :min(x — 2o+ ho(y +dy),y + dy)
=min(y + hy(y)dy,y + dy) =y + hs(y)dy,
since h)(y) <1 and
C(zx+dx,y) = min(x +dz — x9 + ha(y), y) = min(y + dx,y) =y,
since dz > 0. Therefore with (I0) we arrive at
vo(dz,dy) = C(z,y) + Clx + dz,y + dy) — C(z,y + dy) — C(x + dx)
=y+y+dy— (y+hy(y)dy) —y = (1 - hy(y))dy. (14)
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Altogether the measure y¢ of the infinitesimal rectangles and hence dC(x,y) is
given by

hy(y)dy ifr € [0,z1], z=hi(y),
vo(dz,dy) =9 (hy(y) —hi(y)dy  ifx € [z1,22], =22 — ha(y) + h1(y),
(1 — hb(y))dy ifr € [x2,1], x=x2—ha(y)+y.

(15)
Our next step is to identify situations in which C' is indeed a copula.
THEOREM 4. The function C(z,y) defined by @) is a copula if and only if
(i) hi(y) and ha(y) are increasing;
(i) h1(0) =0, h2(0) = 0;
) hi(1) = @1, ho(1) = 22;
(iv) 0 <hai(y) < haly) <y;
(v) 0<m(y) < hy(y) < 1.
Proof. The structure of the proof is as follows: we first prove the necessary
condition by showing that if C' is a copula, then properties (i)-(v) are satisfied.
Then we exploit these properties to show that C' is a copula.

Let C(x,y) be a copula and hi(y) = C(z1,y) and ha(y) = C(x2,y). Prop-
erties (i—(iii) are straightforward. In order to prove (iv), let us consider the
rectangle [z, 1] x [0, 1]. Since C(z,y) is a copula, we have

C(.’I}, 0) + C(l7y1) - C(xayl) - 0(17 0) =Y — C(xayl) > 07 (16)
and thus y; > C(z, y1).

We proceed in a similar way to prove (v). Let us consider the rectangle

(iii

[, 1] X [y1, ya]-
For an arbitrary copula C(x,y) we have
C(‘Ta y1)+0(17 y2) _C(‘Ta y2) _C(la ?J1) = C(ZE, y1)+y2 —C(ZE, ?J2) —y1 = 0. (17)

Then
Y2 — 4 > C(.’Ii,yz) - C(x7y1)

and thus C’'(z,y) < 1 ae. This implies h'(y) < 1 a.e. for h(y) = C(z,y)
(see also [14, Theorem 2.2.7.] ). Furthermore
hi(y) < hy(y)

since for every (z,y) such that = + ha(y) — 22 = hq(y) with x € |21, 23] we have
g—; + hh(y) = h)(y) and g—; <0.



V. BALAZ — M. R. IACO — O. STRAUCH — S. THONHAUSER — R. F. TICHY

On the other hand, it follows from (v) and (&) that vy (dz,dy) is nonnegative
for every (x,y) € [0,1] and by (@) that C(z,0) = C(0,y) = 0. Thus C(z,y)
is a distribution function. We need to show that C'(z,1) = z and C(l,y) =y
for every (z,y) € [0, 1]?. Indeed we have

min(z, h1(1)) = min(z,z1) =z if z € [0, 1],

C(x,1) = { max(z + ho(1) — 22, h1 (1)) = max(z,21) =2 if & € [271,22],

min(z — 22 + ha(1),1) = min(z,1) =z if z € [x9,1].
For x = 1 we need
C(1,y) = min(1 — 22 + ha(y),y) = y. (18)
Since ho(1) = x2, then ([I]) is equivalent
1=y > hy(1) = ha(y), (19)
which holds true, since ha(1) — hao(y) = (1 — y)hb(y*) for some y* € (y,1) and
the derivative satisfies (v). O

Theorem Ml implies the following bounds on candidate functions hy and hs.

— |y if y € 10, 21], _Jo if y € 0,1 — 1],
hl(y)_{xl ify € [z1,1], h(y)_{y—(l—xl) ifyell—mz,1],
_ Yy if y € 10, x2], 0 if y € 10,1 — x2],
Tia(y) = ho(y) =
(®) {xz if y € [xo, 1], ha(w) {y—(l—xg) ifye[l—mxo,1],
where
ha(y) < hiy) < ha(y),  ha(y) < ha(y) < ha(y). (20)

Now, we return to the integral (2]).
THEOREM 5. Let us define a function G by
G :=G(y, h1, ha, b, hy) =
= Fi(h(y), 9) Wi (y) + Fa(z2 — ha(y) + hn(y),y) (h(y) — k1 (y))

+ F3(z2 — ha(y) + y,y) (1 — hs(y)). (21)
If hy, ha mazimize fol Gdy and satisfy Theorem[), then
1 el 1
max / /F(x,y)dC(x,y) = / Gdy. (22)
C(z,y)— copula Jo Jo 0

If not, then we only have the following inequality

max /01 /OlF(x,y)dC(x,y) < /OlGdy. (23)

C(z,y)eC

10



AN EXTREMAL PROBLEM IN UNIFORM DISTRIBUTION THEORY

The class C is the set of all copulas of the form Q) with hy, ho fulfilling the
assumptions of Theorem 4.

Proof. Let F be a function defined on [0, 1]? such that Dy = %x;/) changes
its sign as indicated in Fig. 4. Then the two-dimensional Riemann-Stieltjes in-
tegral of F' with respect to the copula C' defined in (@) is given as follows

/ / (z,y)dC(x,y) = / Fi(hi(y),y)h) (y)dy
/ Fy(x2 — ha(y) + ha(y), y) (R (y) — R (y))dy

0
+ / F3(z2 — ha(y) +y,y) (1 — hy(y))dy (24)
0
0

Since under the assumptions of Theorem H, C is indeed a copula, the repre-
sentation from Theorem 3. implies optimality. The second statement is obvious,
since the class C is a subset, due to additional restrictions, of candidate functions
hi, hs. d

REMARK 1. Note that to compute extremes of f01 G(y, h1, ha, b, hY)dy we can
apply calculus of variations (cf [29, p. 33]). In particular, if (hq, hy) are extrema
for the integral fol G(y, hi, ha, by, hS)dy, then (hq, hy) satisfy the Euler-Lagrange
differential equations

96 496
Ohy dyon,
oG d oG
o 4 0& 2
dhy  dy O, (26)
The solution (A1, ho) to ([Z8) maximizes [ G(y, h, ha, b, hy)dy if
2 2
9°G ST oo aG;z'
<0 P oMok <. (27)
’ *°G _0°G
Oh0h; dhLOR,  OhLOK,

REMARK 2. From the optimal copula with representation (@) and the prop-
erties of hy and hs from Theorem dl we can derive the solution of the prob-
lem in the vocabulary of optimal couplings as well. Notice that for = € [0, x1),
(z,y) is mapped to (hi(y),y). According to Theorem @l h; is monotone in-
creasing and admits an inverse g;. For = € [z1,2z2), we have (z,y) is mapped

11
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to (z2 — (ha(y) — h1(y)),y), where x5 — (ho(y) — hi(y)) is monotone decreas-
ing in y with inverse function go. Finally, for € [x9,1], we have (z,y) —
(z2 +y — ha(y),y), with zo + y — he(y) increasing in y and inverse gs. There-
fore we can identify the optimal coupling (U, T'(U)) for U uniformly distributed
on [0, 1] and

g1(x), z€]0,21),

I(z) =9 92(2), @€ [z1,32),
g93(x), w € [x2,1].

3. A piecewise linear cost function

Let Fl(x7y) = xilyv VS (0,.’1}1),
F(x,y) = F2<'r>y) - %:Tmlya T e (x17x2)7

r—To

Fy(z,y) = =2y, € (22,1),
with z-component as shown in Fig. 10.

To—x
T2—T1
x T—xo
T 1—x2o
0 X1 X2 1
Figure 10.

Towards the construction of G from (2II), we identify

h
Fy(hi(y), vy (y) = x—iyh’l,

ha — hy
T2 — 1

Fa(w2 = ha(y) + (), y) (Ra(y) = P w)) = y(hy— ),

a2 = ha(y) + yo0) (1= By (0) = 2= 2y(0 — B,

12
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such that G takes the form

h
G = —lyhll +
T

ha — hy / / y_h2 /
hy —h 1— hs5).
szfﬂffly( 2 1)+17x23/( 2)

The associated Euler-Lagrange equations are given by
oG d 0G R hYy — b h ha —h
=dy_2 "1, AL

8—h1_@8h/1_l‘1y o — X1 X1 To — X1

:0’

oG A oG hy—My  1—hy hy—h y—h2+ Yy
8h2 dy 8;7/2 To9 — X1 1-— T2 T9 — X1 1-— i) 1-— X9

Now, adding 29) and (B0) and multiplying the sum by 1_;”2 we get

h’(l_m2>+h’=ﬁ<1_:€2>+@1.
A Ty y

Multiplication of ([29) with (*2*1) gives

— h — h
h’1<$2 m1+1)h’2:_1<x2 m1+1>_2.
T Y T Yy

Summing up BIl) and (B2) we find

h
hll = —1 — X1
Y
and hence
h
h/ = —2 — X2
)
The general solution h(y) of the differential equation
h
n=-—uz,
Y

has the form
hy) = cy — zy logy.
From the boundary conditions h(1) = z and h(0) = 0, we find
h(y) = zy(1 —logy) and 7'(y) = z(—logy).
Thus
hi(y) = z1y(1 —logy), ha(y) = z2y(l — logy),

which unfortunately do not satisfy the condition (v) in Theorem [l

=0.

(31)

13
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Finally, G is given through

X X
G =y*logy( — ) +y*(logy)?( —> ) +4°
1—562 1—562

which yields the value

1
€T9 1 1
Gdy = —— )+ 38
/0 Y 1x2< 27>+3 (38)

On the other hand, if k1 (y) =21y and ho(y) =22y, then G =12 and f01 Gdy=1
Thus [B7) does not maximize f01 Gdy.

Note that for F(z,y) = f(x)y, with f(z) uniform distribution preserving map
(u.d.p.) we have

N 1 r1
i 1
L DDLU L || | Favacey,
(39)

max lim iZf(:cn)q)(xn = max /fx)(b (40)

z,—u.d,P—u.d.p. N—oo N d—u.d.p.
n=

Then (@0) is in general smaller than (39). By [7, Corollary 3| for u.d.p. f(x)

we have
1

Therefore in our situation we have fol fol F(z,y)dC(z,y) > +.

REMARK 3. The example points out the deficiencies of the variational formu-
lation in the present context. When maximizing (2)) it is essential to preserve the
uniform distribution property of the marginals. In the formulation via the func-
tion (1), which led to the problem from the calculus of variations, this constraint
is not present anymore and the maximization takes place over differentiable
hi, he. On the other hand the optimal copula C' in ([@) with hq(y) = C(z1,y)
and ha(y) = C(x2,y) does not enforce any smoothness properties, which im-
plies that when solving (2I)) one does not necessarily get an upper bound for
[@). The same reasoning suggests that when maximizing (21I]) over differentiable
functions, which fulfill the conditions stated in Theorem [l one in general derives
a lower bound for ().

14
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4. A different approach using coupling

In this section we consider the particular example

F(z,y) = sin(r(z +y)),
which is of interest since the associated maximization problem could not be
solved before by the direct methodology introduced in [7] and above. For this
choice ZE@:y)
Jx 0y
bound for

relates to the behavior illustrated in Figure 3. In [9] an upper

/[o . Sin(ﬂ'(l‘ + y))’y(dx, dy) . (42)

was found by means of a discrete approximation and the Hungarian Algorithm
from combinatorial optimization. We will show that the maximizing copula nu-
merically identified in [9] is indeed the one maximizing (@2)). This statement will
be an immediate consequence of the following result. It is a variant of a Theorem
from [25] and is stated in [I0] without complete proof. Here we complement the
proof by its mathematical details based on a constructive procedure, see [25] 20],
leading to the application of Theorem [I1

THEOREM 6 (Th. 3.7 from [10]). Let p, v be the uniform distribution on [0, 1]
and the cost function c(z,y) = ¢(xz +y) with ¢ : [0,2] — R. In particular we
assume that ¢ € C?[0,1] and that there is k € (0,2) such that ¢"(x) < 0 for
x €10,k) and ¢ (x) > 0 for x € (k,2]. If 8 € (0,1) denotes the solution to

)

0(28) — ¢(8) = B¢ (B

)

then
_ ﬁ -, T e U)aﬁ)a
P(z) = { x, x€[B,1],
induces by (U,F(U)) for some standard uniformly distributed U an optimal c-
-coupling between P and Q).

REMARK 4. From this Theorem we immediately get a maximizing couple for
(@2). Namely, (U,T'(U)) with I' as above and § = 0.75412 solving

sin(27 ) — sin(wB) = B cos(nf).

Proof of Theorem For the application of Theorem [Il we need a candi-
date c-convex function:

- f(@) = fi(@)jo,p)(x) + fa(z)I15,1)(2),

filz) =2¢'(B) and  fao(z) = 5 (8(22) — $(28)) + B¢ ().

| =

15
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For checking c-convexity, as indicated in (), introduce for £ € [0, 1]:

PHE), x€[0,8),

Vr)(§) = { P2(€), x€[B,1],

where

PO = 65—+ )+ 26/(5) — 6(5),
YH(O) = Bl +6) — 56(22) — 56(28) + 54 (5).

The first step of the proof towards the c-convexity of f is to show

Ur@) (@) = f(z) Vo € [0,1]

which follows from the definition of f. The second step consists of showing that

Yr) (&) < f(§) V(z,§) € [0,1] x [0,1].

At first we need some details on the location of 5. From the definition of 5 and
the mean value theorem we obtain 37 € (3,253) with ¢'(7) = ¢'(8). Since ¢ is
concave on [0, k) and convex on (k, 2] we see that § < k < 7 < 20.

In the following we distinguish four situations.

e For z € [0,3) and £ € [0, 5) the functions are given by
Ur@) () =8B —x+&) +a¢'(8) — d(B), (&) =5¢'(B).

Therefore we need to check:
f(&) = tr@) () = (€ —2)¢'(B) — (6(B+ & —2) — 9(B)) = Fu(x,€).  (43)

Obviously Fi(x,&) = 0 for (0,0), (0,0) and (z,z). In general we have by
concavity on [0, k) and the definition of 3, ¢(23) = ¢(8) + B¢’ (B)

P(B)+ (B+E—x—P)¢'(B) = ¢(B+& — ),

since 8 + & — x € [0,20], which proves that ({A3]) is positive.
e For z € [0,3) and £ € [3, 1] the functions are given by

Yro(€) = 6(8 — 2 +€) + 20'(8) ~ 9(8)
1(6) = 3 (6(26) — 6(28) + 66/(5).

16
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We need the following to be positive:
5 (9(26) — 9(28)) + 66/(8) — B(5 + € — 2) — 30/ (8) + 9(8)

= 26(26) + 56(26) — 2/ (5) — 6(5 + €~ )
> 9(€+5) ~ 29/(8) — $(5 +& — ) = Fo(z£),

where the equality above follows from the definition of 8 and the inequality
follows from convexity since k < 23 < 2¢. Observe

F2(xa§):0 for (075) and (536)
To prove positivity the strategy is as follows, firstly show

Fy(z,&=p5)>0 forall x€]0,5)
and secondly show that

%Fz(x,é) >0 forall (x,8) €]0,8)x(8,1).

Look at

0

ol € = B) = ~¢'(8) + ¢/(26 — 2)

which is zero in (0, 5) exactly if z = & = 23 — 7 < /3. Since
2

0< ¢"(r) = — 53 il € = B)lams
we have that
(&, =P) = ¢(28) — 28— 7)¢(1) — ¢(7) > 0
is a maximum, it is positive by convexity (k < 7 < 2(). Thus,
Fy(z,6=p)>0 for z€]0,05).
Now we can deal with checking the interior,
2R =03 +9) -3+ €~ )

Suppose 5+ £ — x > k, then by convexity ¢'(8 + &) > ¢'(8 + £ — x).
On the other hand if 5+ & — x < k we have

P(B+E—x) < (B)=¢'(1) < (28) < ¢ (B+E)
since 25 < B+ €.

17
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e Consider x € [8,1] and £ € [0, 3), here

Yrie) (€)= 6(+6)— 50(2) — 56(20)+86(8), F(€)=h(E)=E6(8)

and we need

§6/(8) — 9la +8) + 30(22) + 56(26) — B (5)
> 9(a+ ) — d(z +€) — (8- () = Fy(a,©)

to be positive, the inequality stems from convexity since 2z > 25 > k.

We proceed as before. F3(x,&) = 0 for (z,8) and (53,0). At first fix z = 3,
F5(z = B,y) =0if y = 0 and y = 8. In between we study

3}

8_5F3( =B,6) =—-¢'(B+&) +¢'(8),

which is zero in (0, 3) exactly if £ = ¢ = 7 — . Again due to convexity
of ¢ on (k,2] we have a maximum in £ and

Fy(z = 8,€) = $(28) — ¢(7) — (28 — )¢/ (1) >
such that we have F3(x = (,£) > 0 for £ € [0,3). On the interior we
show that

0
5 L3@8) = ¢(B+a)—¢(x+€) >0.

If 2 +& > k we have from convexity ¢'(B+x) > ¢'(z +&). fx+ & < k
we have <z + £ <k <7 <28 <+ x and therefore

¢z +&) < ¢'(8) = ¢'(r) < ¢'(26) < ¢'(B + ).
e Let z € [8,1] and £ € [3,1]. Here

Yre)(6) = Bz +6) — 56(22) — 29(28) + B4/(8)

1(6) = 3 (6(26) —~ 6(28) + 66/(5),
such that
f(€) = Yrw (&) = (21') + <Z>(2€) Pz +¢) >0,
is fulfilled by convexity since = + &, 2m, 26 > 208 > k.

We can conclude that 1r,(§) < f(§)  V(x,€) €[0,1] x [0, 1], which accord-

ing to Theorem [ shows that the vector (U,I'(U)) for U L U([0,1]) yields an
optimal coupling. O

18
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