DOI: 10.1515/udt-2016-0005
Unif. Distrib. Theory 11 (2016), no.1, 59-78

ON STRONG NORMALITY

Jean-Marie De Koninck - Imre Kátai - Bui Minh Phong

Dedicated to the memory of Professor Pierre Liardet

Abstract

We introduce the concept of strong normality by defining strong normal numbers and provide various properties of these numbers, including the fact that almost all real numbers are strongly normal.

Communicated by Werner Georg Nowak

Given a fixed integer $q \geq 2$, an irrational number α is said to be a normal number in base q (or a q-normal number) if any preassigned sequence of k digits (in base q) appears in the q-ary expansion of α at the expected frequency, namely $1 / q^{k}$.

Normal numbers have been studied since Borel [1] in 1909. Hence the vast literature concerning normal numbers (see for instance Champernowne [3], Copeland and Erdős [4], Davenport and Erdős [5], and the recent book of Bugeaud [2]). In a series of papers (see [6] through [11]), the first two authors obtained new results concerning normal numbers, including various ways of constructing new families of normal numbers.

In this paper, we will identify a very special family of normal numbers-that we will call strongly normal numbers - which are connected with arithmetical functions that have a local normal distribution, such as the function $\omega(n)$ which counts the number of distinct prime factors of n.

Let us first recall some definitions.
A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers is said to be uniformly distributed modulo 1 (or $\bmod 1$) if for every interval $[\alpha, \beta) \subseteq[0,1$),

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n \leq N:\left\{x_{n}\right\} \in[a, b)\right\}=b-a .
$$

[^0]In other words, a sequence of real numbers is said to be uniformly distributed $\bmod 1$ if every subinterval of the unit interval gets its fair share of the fractional parts of the elements of this sequence.

Recall also that, given a set of N real numbers x_{1}, \ldots, x_{N}, the discrepancy of this set is defined as the quantity

$$
D\left(x_{1}, \ldots, x_{N}\right):=\sup _{[a, b) \subseteq[0,1)}\left|\frac{1}{N} \sum_{\substack{n \leq N \\\left\{x_{n}\right\} \in[a, b)}} 1-(b-a)\right|
$$

It is known that a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers is uniformly distributed $\bmod 1$ if $D\left(x_{1}, \ldots, x_{N}\right) \rightarrow 0$ as $N \rightarrow \infty$ (see Theorem 1.1 in the book of Kuipers and Niederreiter [15]).

Also, given an integer $q \geq 2$, it can be shown (see Theorem 8.1 in the book of Kuipers and Niederreiter [15]) that a real number α is normal in base q if and only if the sequence $\left(\left\{q^{n} \alpha\right\}\right)_{n \in \mathbb{N}}$ is uniformly distributed $\bmod 1$.

We are now ready to introduce the concept of strong normality. For each positive integer N, let

$$
\begin{equation*}
M=M_{N}:=\left\lfloor\delta_{N} \sqrt{N}\right\rfloor, \text { where } \delta_{N} \rightarrow 0 \text { and } \delta_{N} \log N \rightarrow \infty \text { as } N \rightarrow \infty \tag{1}
\end{equation*}
$$

We shall say that an infinite sequence of real numbers $\left(x_{n}\right)_{n \geq 1}$ is strongly uniformly distributed mod 1 if

$$
D\left(x_{N+1}, \ldots, x_{N+M}\right) \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

for every choice of δ_{N} satisfying (11).
Remark 1. Observe that if a sequence of real numbers $\left(x_{n}\right)_{n \in \mathbb{N}}$ is strongly uniformly distributed mod 1 , then it must be uniformly distributed mod 1 as well. The proof goes as follows. Assume that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is strongly uniformly distributed $\bmod 1$ and define the sequence $\left(\epsilon_{k}\right)_{k \in \mathbb{N}}$ by

$$
\epsilon_{k}= \begin{cases}1 & \text { if } \quad k \leq e \\ 1 / \log k & \text { if } \quad k>e\end{cases}
$$

Also, for each integer $k \geq 1$, let $U_{k}=\left\lfloor k^{2} \epsilon_{k}\right\rfloor$ and $V_{k}=U_{k+1}-U_{k}-1$. Moreover, setting $N=U_{k}$ and $M=M_{N}=V_{k}$, one can verify that (1) is satisfied as $k \rightarrow \infty$. To see this, observe that

$$
\begin{align*}
V_{k} & =(k+1)^{2} \epsilon_{k+1}-k^{2} \epsilon_{k}+O(1)=2 k \epsilon_{k+1}+k^{2}\left(\epsilon_{k+1}-\epsilon_{k}\right)+O(1) \\
& =2 k \epsilon_{k+1}+O\left(\frac{k}{\log ^{2} k}\right)=(1+o(1)) 2 k \epsilon_{k} \quad \text { as } k \rightarrow \infty . \tag{2}
\end{align*}
$$

ON STRONG NORMALITY

Now, for each $k \in \mathbb{N}$, define $\delta_{U_{k}}$ implicitly by $V_{k}=\left\lfloor\delta_{U_{k}} \sqrt{U_{k}}\right\rfloor$. Using this in (2), it follows that

$$
2 k \epsilon_{k}(1+o(1))=\delta_{U_{k}} k \sqrt{\epsilon_{k}}(1+o(1)) \quad(k \rightarrow \infty)
$$

from which we obtain that

$$
\delta_{U_{k}}=(1+o(1)) 2 \sqrt{\epsilon_{k}} \quad(k \rightarrow \infty)
$$

Hence, it follows that, as $k \rightarrow \infty$, $\delta_{N}=\delta_{U_{k}} \rightarrow 0$ and $\delta_{N} \log N=(1+o(1)) 2 \sqrt{\epsilon_{k}} \log U_{k}=(1+o(1)) 4 \sqrt{\log k} \rightarrow \infty$, implying that condition (11) is satisfied and also, using the fact that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is strongly uniformly distributed $\bmod 1$, that

$$
\begin{equation*}
D\left(x_{U_{k}}, \ldots, x_{U_{k+1}-1}\right)=D\left(x_{N}, \ldots, x_{N+M}\right) \rightarrow 0 \quad(k \rightarrow \infty) . \tag{3}
\end{equation*}
$$

We shall now use this result to prove that

$$
\begin{equation*}
D\left(x_{1}, \ldots, x_{N}\right) \rightarrow 0 \quad(N \rightarrow \infty) \tag{4}
\end{equation*}
$$

To do so, for each $N \in \mathbb{N}$, let t_{N} be the unique integer k for which $U_{k} \leq N<$ U_{k+1}, from which it follows that

$$
\begin{equation*}
\frac{N-U_{t_{N}}}{N} \leq \frac{U_{t_{N}+1}-U_{t_{N}}}{N} \rightarrow 0 \quad(N \rightarrow \infty) \tag{5}
\end{equation*}
$$

With this set up, we have

$$
\begin{equation*}
N D\left(x_{1}, \ldots, x_{N}\right) \leq \sum_{\ell=1}^{t_{N}-1}\left(U_{\ell+1}-U_{\ell}\right) D\left(x_{U_{\ell}}, \ldots, x_{U_{\ell+1}-1}\right)+\left(N-U_{t_{N}}\right) \tag{6}
\end{equation*}
$$

Applying (3) successively with $k=\ell$ for $\ell=1, \ldots, t_{N}-1$, it follows, in light of (5), that the right hand side of (6) is $o(N)$ as $N \rightarrow \infty$. From this, (4) follows immediately, thus proving our claim.

Remark 2. It follows from the above that if α is a strongly normal number, then it must also be a normal number. Indeed, by definition, the sequence $\left(\left\{\alpha q^{n}\right\}\right)_{n \in \mathbb{N}}$ is strongly uniformly distributed mod 1 and therefore, in light of Remark 1 then it must be uniformly distributed mod 1 , which in turn (as we saw above) is equivalent to the statement that α is a normal number.

Given a fixed integer $q \geq 2$, we say that an irrational number α is a strongly normal number in base q (or a strongly q-normal number) if the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, defined by $x_{n}=\left\{q^{n} \alpha\right\}$, is strongly uniformly distributed mod 1 . First, observe that there exist normal numbers which are not strongly normal. For instance, consider the Champernowne number

$$
\theta:=0.1101110010111011110001001101010111100110111101111 \ldots
$$

that is the number made up of the concatenation of the positive integers written in base 2. It is known since Champernowne [3] that θ is normal. However, one can show that θ is not a strongly normal number. Indeed, given a positive integer n, let $S_{n}=\left\lfloor 2^{n} /(\sqrt{n} \log n)\right\rfloor$ and consider the sequence

$$
\begin{equation*}
2^{2 n}+1,2^{2 n}+2,2^{2 n}+3, \ldots, 2^{2 n}+S_{n} \tag{7}
\end{equation*}
$$

writing each of the above S_{n} integers in binary. Each of the resulting binary integers contains $2 n+1$ digits, implying that the total number of digits appearing in the sequence (7) is equal to $(2 n+1) S_{n}$.

Now, letting $\lambda(m)$ stand for the number of digits in the integer m, the total number N of digits of the concatenated integers preceding the number $2^{2 n}+1$ is, as n becomes large,

$$
\begin{equation*}
N=\sum_{m \leq 2^{2 n}} \lambda(m)=2 n+1+\sum_{m \leq 2^{2 n}}\left\lceil\frac{\log m}{\log 2}\right\rceil=(1+o(1)) 2 n \cdot 2^{2 n} . \tag{8}
\end{equation*}
$$

We can write the first digits of the Champernowne number as

$$
\begin{aligned}
\theta & =0 . \epsilon_{1} \epsilon_{2} \ldots \epsilon_{N} \overline{2^{2 n}+1} \overline{2^{2 n}+2} \ldots \overline{2^{2 n}+S_{n}} \ldots \\
& =0 . \epsilon_{1} \epsilon_{2} \ldots \epsilon_{N} \rho \ldots
\end{aligned}
$$

say, where in fact, $\rho=\overline{2^{2 n}+1} \overline{2^{2 n}+2} \ldots \overline{2^{2 n}+S_{n}}=\epsilon_{N+1} \ldots \epsilon_{N+\lambda(\rho)}$. (Here, $\overline{n_{1}} \overline{n_{2}} \ldots \overline{n_{r}}$ stands for the concatenation of all the digits appearing successively in the integers $n_{1}, n_{2}, \ldots, n_{r}$.) We will first show that the proportion of zeros in the word ρ is too large. For this we shall first count the number of 1 's in ρ. Setting $\beta(m)$ as the number of 1's in the integer m, the total number of 1 's in ρ is equal to

$$
\sum_{m \leq S_{n}} \beta(m)=\frac{1}{2} \frac{S_{n} \log S_{n}}{\log 2}+O\left(S_{n}\right)
$$

from which we can deduce that the total number of zeros in ρ is

$$
\begin{equation*}
\sum_{m=1}^{S_{n}} n+\sum_{m=1}^{S_{n}}(n-\beta(m))=2 n S_{n}-\frac{1}{2} \frac{S_{n} \log S_{n}}{\log 2}+O\left(S_{n}\right) \tag{9}
\end{equation*}
$$

Since $\lambda(\rho)=(2 n+1) S_{n}$ and recalling that $S_{n}=\left\lfloor 2^{n} /(\sqrt{n} \log n)\right\rfloor$, it follows from (9) that the proportion of zeros in ρ is equal to, as $n \rightarrow \infty$,

$$
\begin{aligned}
\frac{1}{\lambda(\rho)} \times \text { the number of zeros in } \rho & =\frac{2 n}{2 n+1}-\frac{1}{2} \frac{\log S_{n}}{(2 n+1) \log 2}+o(1) \\
& =1+o(1)-\frac{1}{2} \frac{n \log 2-\frac{1}{2} \log n}{(2 n+1) \log 2}+o(1) \\
& =1-\frac{1}{4}+o(1)=\frac{3}{4}+o(1)
\end{aligned}
$$

Then, since

$$
\left|\sum_{\substack{N+1 \leq \nu \leq N+M \\\left\{2^{\nu} \theta\right\}<\frac{1}{2}}} 1-\frac{1}{2}(2 n+1) S_{n}\right| \geq \frac{1}{4}(2 n+1) S_{n}
$$

it follows that, setting $x_{n}:=\left\{2^{n} \theta\right\}$ and choosing

$$
M=M_{N}=(2 n+1) S_{n} \approx \sqrt{N} / \log \log N
$$

(where we used (8)), thereby complying with condition (11), the discrepancy of the sequence of numbers x_{N+1}, \ldots, x_{N+M} is

$$
\begin{aligned}
& D\left(x_{N+1}, \ldots, x_{N+M}\right) \\
& =\sup _{[a, b) \subseteq[0,1)} \frac{1}{(2 n+1) S_{n}}\left|\sum_{\substack{N+1 \leq \nu \leq N+M \\
\left\{2^{\nu} \theta\right\} \in[a, b)}} 1-(b-a)\left((2 n+1) S_{n}\right)\right| \\
& \geq \frac{\frac{1}{4}(2 n+1) S_{n}}{(2 n+1) S_{n}}=\frac{1}{4}
\end{aligned}
$$

and therefore does not tend to 0 , thereby implying that θ is not strongly normal.
Remark 3. Observe that instead of choosing $M_{N}=\left\lfloor\delta_{N} \sqrt{N}\right\rfloor$ as we did in (11), we could have set $M_{N}=\left\lfloor\delta_{N} N^{\gamma}\right\rfloor$, where γ is fixed real number belonging to the interval $(0,1)$, and then introduce the corresponding concept of a γ-strongly uniformly distributed sequence mod 1 , with corresponding γ-strong normal numbers. In this case, one could easily show that if $0<\gamma_{1}<\gamma_{2}<1$, then any γ_{1}-strong normal number is also be a γ_{2}-strong normal number.
Remark 4. A further discussion on appropriate choices of M_{N} in the definition of strong normality is exposed in Section 9.

Identifying which real numbers are normal is not an easy task. For instance, no one has been able to prove that any of the classical constants $\pi, e, \sqrt{2}$ and $\log 2$ is normal, even though numerical evidence indicates that all of them are. Even constructing normal numbers is not an easy task. Hence, one might believe that constructing strongly normal numbers will even be more difficult. So, here we first show how one can construct large families of strongly normal numbers. On the other hand, it has been shown by Borel [1] that almost all real numbers are normal. Although the set of strongly normal numbers is "much smaller" than the whole set of normal numbers, in this paper, we will prove that almost all numbers are strongly normal. After studying the multidimensional case, we examine the relation between arithmetic functions with local normal distribution and strong normality.

1. A simple criteria for strong normality

Our first two propositions provide a simple criteria for strong uniform distribution mod 1 and for strong normality. They are direct consequences of the definition of strong normality.

Proposition 1. Let \mathcal{D} be the set of all continuous functions $f:[0,1] \rightarrow[0,1)$ such that $\int_{0}^{1} f(x) d x=0$. Then, the sequence $\left(x_{n}\right)_{n \geq 1}$ is strongly uniformly distributed mod 1 if and only if, for all $f \in \mathcal{D}$, letting $M=M_{N}$ be as in (1),

$$
\frac{1}{M} \sum_{j=1}^{M} f\left(\left\{x_{N+j}\right\}\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

Given a positive real number $\alpha<1$ whose q-ary expansion is written as $\alpha=0 . \epsilon_{1} \epsilon_{2} \ldots$, where each $\epsilon_{j} \in \mathcal{A}_{q}:=\{0,1, \ldots, q-1\}$. For an arbitrary word $\beta=\delta_{1} \ldots \delta_{k} \in \mathcal{A}_{q}^{k}$, let $R_{N, M}(\beta)$ stand for the number of times that the word β appears as a subword of the word $\epsilon_{N+1} \ldots \epsilon_{N+M}$.

Proposition 2. A positive real number $\alpha<1$ is strongly q-normal if and only if, given an arbitrary word $\beta=\delta_{1} \ldots \delta_{k} \in \mathcal{A}_{q}^{k}$ and $M=M_{N}$ as in (11),

$$
\lim _{N \rightarrow \infty} \frac{R_{N, M}(\beta)}{M}=\frac{1}{q^{k}} .
$$

2. The construction of strongly normal numbers

We first show how one can go about constructing strongly normal numbers. One way is as follows. First, we start with a normal number in base $q \geq 2$, say $\alpha=0 . \epsilon_{1} \epsilon_{2} \ldots$, and then for each positive integer T, we consider the corresponding word $\alpha_{T}=\epsilon_{1} \epsilon_{2} \ldots \epsilon_{T}$. One can show that, if the sequences of integers $T_{1}<T_{2}<\cdots$ and $m_{1}<m_{2}<\cdots$ are chosen appropriately, and if, for short, we write γ^{m} for the concatenation of m times the word γ, that is $\gamma^{m}=\underbrace{\gamma \ldots \gamma}_{m \text { times }}$, then the number

$$
\beta=0 . \alpha_{T_{1}}^{m_{1}} \alpha_{T_{2}}^{m_{2}} \cdots
$$

is a strongly normal number in base q.
We first show that the choice $T_{\ell}=\ell$ and $m_{\ell}=\ell$ is an appropriate one and in fact we state this as a proposition.

ON STRONG NORMALITY

Proposition 3. Let α be a q-normal number. Then, using the above notation, the number

$$
\beta=0 . \alpha_{1}^{1} \alpha_{2}^{2} \alpha_{3}^{3} \ldots
$$

is a strongly normal number in base q.
Proof. Given a word $\gamma=c_{1} \ldots c_{r} \in \mathcal{A}_{q}^{r}$ and an arbitrary word $\delta_{1} \ldots \delta_{h} \in \mathcal{A}_{q}^{h}$, let $E_{\gamma}\left(\delta_{1} \ldots \delta_{h}\right)$ be the number of occurrences of γ as a subword in $\delta_{1} \ldots \delta_{h}$ and let

$$
\Delta_{\gamma}\left(\delta_{1} \ldots \delta_{h}\right):=\left|E_{\gamma}\left(\delta_{1} \ldots \delta_{h}\right)-\frac{h}{q^{r}}\right| .
$$

On the other hand, let $\kappa_{1}, \kappa_{2}, \ldots$ stand for the q-ary digits of β, so that $\beta=0 . \kappa_{1} \kappa_{2} \ldots$, and let $M=M_{N}$ be as in (11). Finally set

$$
\mu:=\kappa_{N+1} \kappa_{N+2} \ldots \kappa_{N+M} .
$$

We will count how many times the word γ occurs as a subword of μ.
Denoting by $\lambda(\gamma)$ the length of the word γ, observe that

$$
\lambda\left(\alpha_{1}^{1} \alpha_{2}^{2} \ldots \alpha_{R}^{R}\right)=\sum_{\ell=1}^{R} \ell^{2}=\frac{R(R+1)(2 R+1)}{6} \quad(R \in \mathbb{N}) .
$$

Setting

$$
K_{R}:=\frac{R(R+1)(2 R+1)}{6} \quad(R \in \mathbb{N})
$$

it is easily seen that no more than one K_{ν} is located in the interval $[N+1, N+M]$. Indeed, let us show that

$$
\begin{equation*}
\text { if } \quad N<K_{\nu} \leq N+M, \quad \text { then } \quad K_{\nu+1}>N+M \tag{10}
\end{equation*}
$$

Indeed, it is clear that

$$
\begin{equation*}
K_{\nu+1}=K_{\nu}+(\nu+1)^{2}>N+(\nu+1)^{2} \quad(\nu \geq 1) \tag{11}
\end{equation*}
$$

and that, since $\nu^{3}>K_{\nu}>N$, it follows that $\nu>N^{1 / 3}$, so that $(\nu+1)^{2}>N^{2 / 3}$, which combined with (11) implies that

$$
K_{\nu+1}>N+N^{2 / 3}>N+\left\lfloor\delta_{N} \sqrt{N}\right\rfloor=N+M
$$

thus proving our claim (10).
Now, assume that N is large and let R be the largest integer such that $K_{R} \leq N+M$. We then have two distinct possibilities:

Case I: $N \leq K_{R}$;
Case II : $K_{R}<N$.

JEAN-MARIE DE KONINCK — IMRE KÁTAI — BUI MINH PHONG

If Case II holds, then

$$
E_{\gamma}(\mu)=\frac{M}{R+1} E_{\gamma}\left(\alpha_{R+1}\right)+O(R)+O\left(\frac{M}{R}\right)
$$

from which it follows that

$$
\begin{equation*}
\Delta_{\gamma}(\mu) \leq \frac{M}{R+1} \Delta_{\gamma}\left(\alpha_{R+1}\right)+O\left(R+\frac{M}{R}\right) . \tag{12}
\end{equation*}
$$

Because α is normal, we have that $\frac{\Delta_{\gamma}\left(\alpha_{R}\right)}{R} \rightarrow 0$ as $R \rightarrow \infty$, while on the other hand, $\left(R+\frac{M}{R}\right) \cdot \frac{1}{M} \rightarrow 0$ as $M \rightarrow \infty$. Using this in (12), it follows that

$$
\frac{1}{M}\left|E_{\gamma}(\mu)-\frac{M}{q^{r}}\right| \rightarrow 0 \quad \text { as } M \rightarrow \infty
$$

so that in light of Proposition 2 the number β is strongly normal in base q.
Since Case I can be handled in a similar way, the proposition is proved.
Remark 5. Other choices of T_{ℓ} and m_{ℓ} can also lead to the construction of strongly normal numbers. For instance, let $R>0$ be a fixed integer and, for each real number $x>0$, define

$$
x_{1}:=\log _{+} x=\max (1, \log x), \quad x_{\ell+1}=\log _{+} x_{\ell} \quad(\ell=1,2, \ldots)
$$

Given a real number

$$
\alpha=0 . \epsilon_{1} \epsilon_{2} \ldots \in \mathcal{A}_{q}^{\mathbb{N}}
$$

set

$$
F(\alpha ; \beta)=\#\left\{\left(\gamma_{1}, \gamma_{2}\right): \alpha=\gamma_{1} \beta \gamma_{2}\right\}
$$

that is the number of occurrences of the word β in the digits of the word α. One can construct a real number α such that, for every integer $k \geq 1$,

$$
\begin{equation*}
\max _{\beta \in \mathcal{A}_{q}^{k}}\left|\frac{1}{M_{N}} F\left(\epsilon_{N+1} \ldots \epsilon_{N+M_{N}} ; \beta\right)-\frac{1}{q^{k}}\right| \rightarrow 0 \quad \text { as } N \rightarrow \infty . \tag{13}
\end{equation*}
$$

Indeed, for each integer $\ell \geq 1$, let us choose $T_{\ell}=\ell$ and $m_{\ell}=2^{2} \quad$, that is

$$
\ell=\underbrace{\log _{2} \log _{2} \ldots \log _{2}}_{R+1 \text { times }} m_{\ell}
$$

Now, starting with a q-ary normal number $\gamma=0 . \epsilon_{1} \epsilon_{2} \ldots$, and, for each positive integer T, set $\gamma_{T}=0 . \epsilon_{1} \epsilon_{2} \ldots \epsilon_{T}$. Then, one can show that the number

$$
\beta=0 . \gamma_{1}^{m_{1}} \gamma_{2}^{m_{2}} \ldots
$$

does indeed satisfy condition (13) and is therefore a strongly q-normal number.

ON STRONG NORMALITY

3. Preliminary lemmas

The classical Borel-Cantelli lemma can be stated as follows.
Lemma 1. Let (Ω, \mathcal{F}, P) be a probability space and let A_{1}, A_{2}, \ldots be a list of the elements of \mathcal{F}. Let $E=\left\{x: x\right.$ belongs to infinitely many A_{j} 's $\}$. Assuming that

$$
\sum_{j=1}^{\infty} P\left(A_{j}\right)<\infty
$$

then $P(E)=0$.
Given a probability space (Ω, \mathcal{F}, P), we say that A_{1}, A_{2}, \ldots is a list of completely independent elements of \mathcal{F} if, given any finite increasing sequence of integers, say $i_{1}<i_{2}<\cdots<i_{k}$, we have

$$
P\left(A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{k}}\right) .
$$

The second Borel-Cantelli lemma can be considered as the converse of the classical Borel-Cantelli lemma. It can be stated as follows.

Lemma 2. Let (Ω, \mathcal{F}, P) be a probability space and let A_{1}, A_{2}, \ldots be a list of completely independent elements of \mathcal{F}. Letting E be as in Lemma 1 and assuming that
then $P(E)=1$.

$$
\sum_{j=1}^{\infty} P\left(A_{j}\right)=\infty
$$

A real number is simply normal in base q if in its base q expansion, every digit $0,1, \ldots, q-1$ occurs with the same frequency $1 / q$. The following lemma offers a simple way of establishing if a given real number is a normal number.

Lemma 3. Let $q \geq 2$ be an integer. If a real number α is simply normal in base q^{r} for each $r \in \mathbb{N}$, then α is normal in base q.

Proof. A proof of this result can be found in the book of Kuipers and Niederreiter [15].

In the spirit of Proposition 2, we will say that a real number $\alpha<1$ is a simply strong normal number in base q if for every digit $d \in \mathcal{A}_{q}$,

$$
\lim _{N \rightarrow \infty} \frac{R_{N, M}(d)}{M}=\frac{1}{q} .
$$

JEAN-MARIE DE KONINCK - IMRE KÁTAI - BUI MINH PHONG

Lemma 4. Let $q \geq 2$ be an integer. If a real number α is a simply strong normal in base q^{r} for each $r \in \mathbb{N}$, then α is strongly normal in base q.

Proof. This result can be proved along the same lines as one would use to prove Lemma 3 ,

Lemma 5. For each integer $k \geq 1$, let

$$
\pi_{k}(x):=\#\{n \leq x: \omega(n)=k\}
$$

Then, the relation

$$
\pi_{k}(x)=(1+o(1)) \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!} \quad(x \rightarrow \infty)
$$

holds uniformly for

$$
\begin{equation*}
|k-\log \log x| \leq \frac{1}{\delta_{x}} \sqrt{\log \log x} \tag{14}
\end{equation*}
$$

where δ_{x} is some function of x chosen appropriately and which tends to 0 as $x \rightarrow \infty$.

Proof. This follows from Theorem 10.4 stated in the book of De Koninck and Luca [12].

Lemma 6. Letting δ_{x} be as in the statement of Lemma 5,

$$
\max _{\substack{k \text { satisfying } \\ \ell \in\left[0,\left[\delta_{x}^{3 / 2} \sqrt{\log \log x]]}\right.\right.}}\left|\frac{\pi_{k+\ell}(x)}{\pi_{k}(x)}-1\right| \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

Proof. Given k satisfying (14), let θ_{k} be defined implicitly by $k=\log \log x+\theta_{k}$, and let $\ell \in\left[0,\left\lceil\delta_{x}^{3 / 2} \sqrt{\log \log x}\right\rceil\right]$. Then, in light of Lemma 5 , we have, as $x \rightarrow \infty$,

$$
\begin{aligned}
\frac{\pi_{k+\ell}(x)}{\pi_{k}(x)} & =(1+o(1)) \frac{(\log \log x)^{\ell}}{k^{\ell} \prod_{\nu=0}^{\ell-1}\left(1+\frac{\nu}{k}\right)} \\
& =(1+o(1))\left(\frac{\log \log x}{k}\right)^{\ell} \exp \left\{-\frac{\ell(\ell-1)}{2 k}+O\left(\frac{\ell^{3}}{k^{2}}\right)\right\} \\
& =(1+o(1))\left(\frac{1}{1+\theta_{k} / \log \log x}\right)^{\ell}(1+o(1)) \\
& =(1+o(1)) \exp \left\{-\frac{\ell \theta_{k}}{\log \log x}+O\left(\frac{\ell \theta_{k}^{2}}{(\log \log x)^{2}}\right)\right\} \\
& =1+o(1)
\end{aligned}
$$

thereby completing the proof of Lemma 6 .

ON STRONG NORMALITY

For any particular set of primes \mathcal{P}, we introduce the expressions

$$
\begin{equation*}
\Omega_{\mathcal{P}}(n):=\sum_{\substack{p^{a} \| n \\ p \in \mathcal{P}}} a \quad \text { and } \quad E(x):=\sum_{\substack{p \leq x \\ p \in \mathcal{P}}} \frac{1}{p} . \tag{15}
\end{equation*}
$$

The following two results, which we also state as lemmas, are due respectively to Halász [13] and Kátai [14].

Lemma 7. (Halász) Let $0<\delta \leq 1$ and let \mathcal{P} be a set of primes with corresponding functions $\Omega_{\mathcal{P}}(n)$ and $E(x)$ given in (15). Then, the estimate

$$
\sum_{\substack{n \leq x \\ \Omega_{\mathcal{P}}(n)=k}} 1=\frac{x E(x)^{k}}{k!} e^{-E(x)}\left\{1+O\left(\frac{|k-E(x)|}{E(x)}\right)+O\left(\frac{1}{\sqrt{E(x)}}\right)\right\}
$$

holds uniformly for all integers k and real numbers $x \geq 3$ satisfying

$$
E(x) \geq \frac{8}{\delta^{3}} \quad \text { and } \quad \delta \leq \frac{k}{E(x)} \leq 2-\delta
$$

Lemma 8. (Kátai) For $1 \leq h \leq x$, let

$$
\begin{aligned}
A_{k}(x, h) & :=\sum_{\substack{x \leq n \leq x+h \\
\omega(n)=k}} 1 \\
\delta_{k}(x, h) & :=\frac{A_{k}(x, h)}{h}-\frac{\pi_{k}(x)}{x}, \\
E(x, h) & :=\sum_{k=1}^{\infty} \delta_{k}^{2}(x, h) .
\end{aligned}
$$

Letting $\varepsilon>0$ be an arbitrarily small number and $x^{7 / 12+\varepsilon} \leq h \leq x$, then

$$
E(x, h) \ll \frac{1}{\log ^{2} x \cdot \sqrt{\log \log x}}
$$

4. Main results

Theorem 1. The Lebesgue measure of the set of all those real numbers $\alpha \in[0,1]$ which are not strongly q-normal is equal to 0 .

Let r be a fixed positive integer and set $E:=[0,1)^{r}$. Consider an r dimensional sequence $\left(\underline{x}_{n}\right)_{n \in \mathbb{N}}:=\left(x_{1}^{(n)}, \ldots, x_{r}^{(n)}\right)_{n \in \mathbb{N}}$ in \mathbb{R}^{r}. This sequence is said
to be uniformly distributed mod E if, for all intervals $\left[a_{j}, b_{j}\right) \subseteq[0,1), j=1, \ldots, r$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n \leq N:\left\{x_{j}^{(n)}\right\} \in\left[a_{j}, b_{j}\right) \text { for } j=1, \ldots, r\right\}=\prod_{j=1}^{r}\left(b_{j}-a_{j}\right)
$$

Accordingly, the discrepancy of the finite sequence $\underline{x}_{1}, \ldots, \underline{x}_{N}$ in \mathbb{R}^{r} is defined as

$$
D\left(\underline{x}_{1}, \ldots, \underline{x}_{N}\right)=\sup _{\substack{\left.\left(a_{j}, j_{j}\right) \subseteq \leq 0,1\right) \\ j=1, \ldots, r}}\left|\frac{1}{N} \sum_{\substack{\left\{x_{j}^{(n)}\right\} \in\left[a_{j}, b_{j}\right) \\ j=1, \ldots, r}} 1-\prod_{j=1}^{r}\left(b_{j}-a_{j}\right)\right|
$$

Then, we shall say that an infinite sequence $\left(\underline{x}_{n}\right)_{n \in \mathbb{N}}$ is strongly uniformly distributed mod E if

$$
D\left(\underline{x}_{N}, \ldots, \underline{x}_{N+M}\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

for every choice of δ_{N} satisfying (11).
In what follows, we let q_{1}, \ldots, q_{r} be fixed integers ≥ 2.
Theorem 2. The Lebesgue measure of the set of all those r-tuples $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in$ $[0,1)^{r}$ for which the sequence $\left(\underline{x}_{n}\right)_{n \in \mathbb{N}}$, where $\underline{x}_{n}:=\left(\left\{\alpha_{1} q_{1}^{n}\right\}, \ldots,\left\{\alpha_{r} q_{r}^{n}\right\}\right)$, is not strongly uniformly distributed in $[0,1)^{r}$ is equal to 0 .

Theorem 3. Assume that for each $i=1,2, \ldots, r$, the number α_{i} is strongly q_{i}-normal. Let $E=[0,1)^{r}$ and assume that f is a continuous periodic function $\bmod E$ and that it satisfies $\int_{0}^{1} \cdots \int_{0}^{1} f\left(x_{1}, \ldots, x_{r}\right) d x_{1} \cdots d x_{r}=0$. Further set

$$
y_{n}=f\left(\alpha_{1} q_{1}^{\omega(n)}, \ldots, \alpha_{r} q_{r}^{\omega(n)}\right) \quad(n=1,2, \ldots)
$$

Then,

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} y_{n} \rightarrow 0 \quad \text { as } x \rightarrow \infty \tag{16}
\end{equation*}
$$

Moreover, further defining $\underline{z}_{n}:=\left(\left\{\alpha_{1} q_{1}^{\omega(n)}\right\}, \ldots,\left\{\alpha_{r} q_{r}^{\omega(n)}\right\}\right)$ for $n=1,2, \ldots$, we have that $\left(\underline{\underline{z}}_{n}\right)_{n \in \mathbb{N}}$ is uniformly distributed in E.

The following result is a direct consequence of Theorem 3 and is related to the result stated in Lemma 7

ON STRONG NORMALITY

Theorem 4. Let g be any one of the arithmetic functions

$$
\omega(n):=\sum_{p \mid n} 1, \quad \Omega(n):=\sum_{p^{a} \| n} a, \quad \Omega_{\mathcal{P}}(n):=\sum_{\substack{p^{a} \| n \\ p \in \mathcal{P}}} a
$$

and let

$$
\underline{x}_{n}:=\left(\left\{\alpha_{1} q_{1}^{g(n)}\right\}, \ldots,\left\{\alpha_{r} q_{r}^{g(n)}\right\}\right) .
$$

Then, for almost all $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in[0,1)^{r}$, the sequence $\left(\underline{x}_{n}\right)_{n \geq 1}$ is uniformly distributed in $[0,1)^{r}$.

The following result is a consequence of Lemma 8 and we shall omit its proof since it is essentially along the same lines as that of Theorem 3,

Theorem 5. For each integer $i=1, \ldots, r$, assume that α_{i} is strongly q_{i}-normal and set

$$
\underline{x}_{n}:=\left(\left\{\alpha_{1} q_{1}^{\omega(n)}\right\}, \ldots,\left\{\alpha_{r} q_{r}^{\omega(n)}\right\}\right) .
$$

Then, with $M=\left\lfloor N^{7 / 12+\varepsilon}\right\rfloor$,

$$
D\left(\underline{x}_{N+1}, \ldots, \underline{x}_{N+M}\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty .
$$

5. Proof of Theorem 1

Theorem will follow immediately from the following lemma.
Lemma 9. Let (Ω, \mathcal{A}, P) be a probability space, where $\Omega=[0,1)$, let \mathcal{A} be the ring of Borel sets and let P be the Lebesgue measure. Let $q \geq 2$ be a fixed integer and set $\mathcal{A}_{q}:=\{0,1, \ldots, q-1\}$. Let $\epsilon_{n} \in \mathcal{A}_{q}, n=1,2, \ldots$, be independent random variables such that $P\left(\epsilon_{n}=a\right)=1 / q$ for each $a \in \mathcal{A}_{q}$. For each $\omega \in \Omega$, let

$$
\alpha(\omega):=0 . \epsilon_{1}(\omega) \epsilon_{2}(\omega) \ldots
$$

For an arbitrary $\delta>0$, let

$$
E_{\delta}:=\left\{\omega \in \Omega: \limsup _{N \rightarrow \infty} \max _{d \in \mathcal{A}_{q}}\left|\frac{1}{M} \sum_{\substack{n=N+1 \\ \epsilon_{n}=d}}^{N+M} 1-\frac{1}{q}\right|>\delta\right\},
$$

where M satisfies (11). Then,

$$
\begin{equation*}
P\left(E_{\delta}\right)=0 \quad \text { for every } \delta>0 \tag{17}
\end{equation*}
$$

JEAN-MARIE DE KONINCK - IMRE KÁTAI - BUI MINH PHONG

Moreover, setting

$$
E^{*}:=\left\{\omega \in \Omega: \limsup _{N \rightarrow \infty} \max _{d \in \mathcal{A}_{q}}\left|\frac{1}{M} \sum_{\substack{n=N+1 \\ \epsilon_{n}=d}}^{N+M} 1-\frac{1}{q}\right| \neq 0\right\},
$$

we have $P\left(E^{*}\right)=0$.
Proof of Lemman Let $U \in \mathbb{N}$ and given any $d \in \mathcal{A}_{q}$, let

$$
\alpha_{d}\left(\epsilon_{1}, \ldots, \epsilon_{U}\right)=\sum_{\substack{i \in\{1, \ldots, U\} \\ \epsilon_{i}=d}} 1
$$

leftline It is clear that

$$
P\left(\alpha_{d}\left(\epsilon_{1}, \ldots, \epsilon_{U}\right)=j\right)=\frac{1}{q^{U}}\binom{U}{j}(q-1)^{U-j} .
$$

For each $0<\delta<1 / q$, set

$$
\begin{equation*}
S=S(\delta):=\left\{\omega \in \Omega: \max _{d \in \mathcal{A}_{q}}\left|\alpha_{d}\left(\epsilon_{1}, \ldots, \epsilon_{U}\right)-\frac{U}{q}\right|>\delta U\right\} . \tag{18}
\end{equation*}
$$

If $\omega \in S$, then clearly the inequality

$$
\alpha_{d}\left(\epsilon_{1}, \ldots, \epsilon_{U}\right)<\frac{U}{q}-\delta \frac{U}{q}
$$

holds for at least one $d \in \mathcal{A}_{q}$, in which case we have

$$
\begin{align*}
P(S) \leq & \frac{q}{q^{U}} \sum_{0 \leq j \leq(1-\delta) U / q}\binom{U}{j} \cdot(q-1)^{U-j} \\
& =q\left(1-\frac{1}{q}\right)^{U} \sum_{0 \leq j \leq V}\binom{U}{j} \frac{1}{(q-1)^{j}}, \quad \text { where } V=\lfloor(1-\delta) U / q\rfloor . \tag{19}
\end{align*}
$$

Now let

$$
t_{j}=\binom{U}{j} \frac{1}{(q-1)^{j}} \quad(j=0,1, \ldots, V) .
$$

Then, for each integer $j \geq 1$, we have

$$
\frac{t_{j-1}}{t_{j}}=(q-1) \frac{j}{U-j+1}<\frac{(q-1)(1-\delta) U / q}{U+1-(1-\delta) U / q}<\frac{(q-1)(1-\delta)}{q-(1-\delta)}<1-\delta
$$

so that $t_{j-1}<(1-\delta) t_{j}$, thus implying that

$$
\sum_{0 \leq j \leq V} t_{j} \leq t_{V}\left(1+(1-\delta)+(1-\delta)^{2}+\cdots\right)=\frac{t_{V}}{\delta}
$$

ON STRONG NORMALITY

Using the Stirling formula in the form

$$
\log n!=n \log (n / e)+\frac{1}{2} \log (2 \pi n)+\theta_{n} \quad \text { with } \theta_{n} \rightarrow 0
$$

and setting $V=\kappa U$, where $\kappa=\frac{\left\lfloor\frac{1-\delta}{q} U\right\rfloor}{U}=\frac{1-\delta}{q}+O\left(\frac{1}{U}\right)$, we then have

$$
\begin{aligned}
\log t_{V}= & U \log U-\kappa U \log (\kappa U)-(1-\kappa) U \log ((1-\kappa) U)-\kappa U \log (q-1) \\
& +\frac{1}{2} \log \frac{1}{\kappa(1-\kappa)}-\frac{1}{2} \log (2 \pi)+O\left(\theta_{V}\right) \\
= & (-\kappa \log \kappa-(1-\kappa) \log (1-\kappa)-\kappa \log (q-1)) U \\
& +\frac{1}{2} \log \frac{1}{\kappa(1-\kappa)}-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log U+O\left(\theta_{V}\right) .
\end{aligned}
$$

Letting $h(\kappa)=\kappa \log \frac{1}{(q-1) \kappa}+(1-\kappa) \log \frac{1}{1-\kappa}$, it follows that

$$
\log t_{V}=U h(\kappa)+\frac{1}{2} \log \frac{1}{\kappa(1-\kappa)}-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log U+O\left(\theta_{V}\right) .
$$

Observe that

$$
h(1 / q)=\log \frac{q}{q-1} \quad \text { and } \quad h(\kappa)<(1-c(\delta)) \log \frac{q}{q-1}
$$

where $c(\delta)>0$ provided $\delta>0$.
Using this in (19), we obtain that

$$
\begin{align*}
P(S) & \leq q \exp \left\{U \log (1-1 / q)+\log V+U(1-c(\delta)) \log \frac{q}{q-1}\right\} \\
& <\exp \left\{-c_{1}(\delta) U\right\} \tag{20}
\end{align*}
$$

where $c_{1}(\delta)>0$ is some constant depending only on δ and q.
For each integer $r \geq 1$, let $N_{r}=q^{r}$ and consider the interval $\mathcal{L}_{r}=\left[N_{r}, N_{r+1}-1\right]$. Let us cover a given interval \mathcal{L}_{r} by the union of $K_{r}:=1+\left\lfloor\frac{(q-1) q^{r}}{r^{2}}\right\rfloor$ consecutive intervals $\mathcal{T}_{1}^{(r)}, \mathcal{T}_{2}^{(r)}, \ldots, \mathcal{T}_{K_{r}+1}^{(r)}$, each of length $U_{r}:=r^{2}$. Now, we define the sets $S_{i}^{(r)}$, for $i=1, \ldots, K_{r}+1$, as we did for the set S in (18), but this time with the independent variables

$$
\epsilon_{N_{r}+(i-1) U_{r}+\ell} \quad\left(\ell=1,2, \ldots, U_{r}\right) .
$$

For these new independent variables, if we proceed as we did to obtain (20), then we have

$$
P\left(S_{i}^{(r)}\right) \leq q^{r} \exp \left\{-c_{1}(\delta) r^{2}\right\} \quad\left(i=1, \ldots, K_{r}+1\right),
$$

so that

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{K_{r}+1} S_{i}^{(r)}\right) & \ll K_{r} q^{r} \exp \left\{-c_{1}(\delta) r^{2}\right\} \leq \frac{q^{2 r+1}}{r^{2}} \exp \left\{-c_{1}(\delta) r^{2}\right\} \\
& =\exp \left\{-c_{1}(\delta) r^{2}+(2 r+1) \log q-2 \log r\right\}<\frac{1}{r^{3}}
\end{aligned}
$$

provided r is sufficiently large.
Since the series $\sum 1 / r^{3}$ converges, we may apply Lemma 1 and conclude that the set

$$
E_{\delta}:=\#\left\{\omega: \omega \in \bigcup_{i=1}^{K_{r}+1} S_{i}^{(r)} \text { for infinitely many } r\right\}
$$

is such that $P\left(E_{\delta}\right)=0$, thus establishing (17). From this result, then it follows also that $P\left(E^{*}\right)=0$.

6. Proof of Theorem 2

The proof is quite straightforward. Indeed, first set $Q:=q_{1} q_{2} \cdots q_{r}$ and let $\alpha=0 . a_{1} a_{2} \ldots$ be a strongly Q-normal number, where each a_{j} satisfies

$$
a_{j} \in \mathcal{A}_{Q}, \quad a_{j} \equiv b_{j}^{(\ell)} \quad\left(\bmod q_{\ell}\right) \quad \text { with } b_{j}^{(\ell)} \in \mathcal{A}_{q_{\ell}} \quad(\ell=1, \ldots, r)
$$

Writing

$$
\alpha_{\ell}=0 . b_{1}^{(\ell)} b_{2}^{(\ell)} \ldots \quad(\ell=1, \ldots, r)
$$

then each α_{ℓ} is a strongly q_{ℓ}-normal number. This means that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ defined by

$$
x_{n}:=\left(\left\{\alpha_{1} q_{1}^{n}\right\}, \ldots,\left\{\alpha_{r} q_{r}^{n}\right\}\right) \quad(n=1,2 \ldots)
$$

is strongly uniformly distributed $\bmod [0,1)^{r}$, thus completing the proof of Theorem 2.

7. Proof of Theorem 3

Let x be a large number and let us set $S:=\left\lfloor\delta_{x}^{3 / 2} \sqrt{\log \log x}\right\rfloor$, where δ_{x} is as in Lemma 5. Moreover, for each positive integer $m \leq 1 / \delta_{x}^{5 / 2}$, let us consider the interval

$$
U_{m}:=[\lfloor\log \log x\rfloor+m S,\lfloor\log \log x\rfloor+(m+1) S-1]=\left[t_{m}, t_{m+1}-1\right],
$$

say.

ON STRONG NORMALITY

For each integer $k \geq 1$, let $u_{k}:=f\left(\alpha_{1} q_{1}^{k}, \ldots, \alpha_{r} q_{r}^{k}\right)$. Observe that

$$
\begin{align*}
\sum_{n \leq x} y_{n} & =\sum_{k \geq 1} u_{k} \pi_{k}(x) \\
& =\sum_{|k-\log \log x| \leq \sqrt{\log \log x} / \delta_{x}} u_{k} \pi_{k}(x)+\sum_{|k-\log \log x|>\sqrt{\log \log x} / \delta_{x}} u_{k} \pi_{k}(x) \\
& =S_{1}(x)+S_{2}(x) \tag{21}
\end{align*}
$$

say.
It follows from the Turán-Kubilius inequality that

$$
\begin{equation*}
\frac{1}{x} S_{2}(x) \rightarrow 0 \quad \text { as } x \rightarrow \infty . \tag{22}
\end{equation*}
$$

For the evaluation of $S_{1}(x)$, we proceed as follows. Let x be a large number. Then, for each positive integer $m \leq 1 / \delta_{x}^{5 / 2}$, let us consider the interval

$$
U_{m}:=[\lfloor\log \log x\rfloor+m S,\lfloor\log \log x\rfloor+(m+1) S-1]=\left[t_{m}, t_{m+1}-1\right],
$$

say. We then have

$$
\begin{equation*}
S_{1}(x)=\sum_{|m| \leq 1 / \delta_{x}^{5 / 2}} \sum_{k \in U_{m}} u_{k} \pi_{k}(x)=\sum_{|m| \leq 1 / \delta_{x}^{5 / 2}} S^{(m)}(x) \tag{23}
\end{equation*}
$$

say.
Using Lemma 6, it follows that, as x becomes large,

$$
\begin{equation*}
\left|S^{(m)}(x)-\pi_{t_{m}}(x) \sum_{k \in U_{m}} u_{k}\right| \leq o(1) \pi_{t_{m}}(x) \sum_{k \in U_{m}} 1 \tag{24}
\end{equation*}
$$

Since

$$
\pi_{t_{m}}(x) \sum_{k \in U_{m}} 1=(1+o(1)) \sum_{k \in U_{m}} \pi_{k}(x),
$$

it follows that

$$
\begin{equation*}
\pi_{t_{m}}(x) \sum_{k \in U_{m}} u_{k}=(1+o(1))\left\{\sum_{k \in U_{m}} \pi_{k}(x)\right\} \frac{1}{\sum_{k \in U_{m}} 1} \sum_{k \in U_{m}} u_{k} \tag{25}
\end{equation*}
$$

Now the fact that each α_{i} is strongly q_{i}-normal for $i=1, \ldots, r$ implies that

$$
\frac{1}{\sum_{k \in U_{m}} 1} \sum_{k \in U_{m}} u_{k}=o(1) \quad \text { for each } m \leq 1 / \delta_{x}^{5 / 2}
$$

Combining this with (24) and (25), it follows that

$$
\left|S^{(m)}(x)\right| \leq o(1) \sum_{k \in U_{m}} \pi_{k}(x),
$$

which substituted in (23) yields

$$
\begin{equation*}
S_{1}(x) \leq o(1) \sum_{|m| \leq 1 / \delta_{x}^{5 / 2}} \sum_{k \in U_{m}} \pi_{k}(x)=o(x) \tag{26}
\end{equation*}
$$

Using (22) and (26) in (21) completes the proof of (16). The second part of Theorem 3 then immediately follows from (16).

8. Final remarks

When we introduced the notion of strongly normal number in base q, we chose for simplicity to consider intervals $[N+1, N+M]$ with $M=\left\lfloor\delta_{N} \sqrt{N}\right\rfloor$. However, it is interesting to observe that we could have chosen much smaller intervals, namely with $M=\left\lfloor\log ^{2} N\right\rfloor$, and nevertheless still preserve the property that almost all real numbers are strongly normal. Indeed, following the proof used in Lemma 9, as we consider an arbitrary sequence of digits $\epsilon_{N+1} \epsilon_{N+2} \ldots \epsilon_{N+M}$, with $M=\left\lfloor\log ^{2} N\right\rfloor$, and examine the occurrence of an arbitrary digit $d \in \mathcal{A}_{q}$ in this sequence, we could define r as the unique integer such that $q^{r} \leq n<q^{r+1}$, in which case we would have

$$
r^{2} \leq\left(\frac{\log n}{\log q}\right)^{2}<(r+1)^{2}
$$

In the end, we would see that

$$
\left|\frac{1}{\log ^{2} n} \sum_{\substack{\nu=n+1 \\ \epsilon_{\nu}=d}}^{n+\left\lfloor\log ^{2} n\right\rfloor} 1-\frac{1}{q}\right|>\delta
$$

holds only for finitely many n 's and that this is true for each $\delta>0$. We can conclude from this that, for almost all α,

$$
\lim _{n \rightarrow \infty} \max _{d \in \mathcal{A}_{q}}\left|\frac{1}{\log ^{2} n} \sum_{\substack{\nu=n+1 \\ \epsilon_{\nu}=d}}^{n+\left\lfloor\log ^{2} n\right\rfloor} 1-\frac{1}{q}\right|=0
$$

thus also establishing that we could have defined the notion of strongly normal numbers with $M=\left\lfloor\log ^{2} N\right\rfloor$ instead of with $M=\left\lfloor\delta_{N} \sqrt{N}\right\rfloor$.

Now, could we have chosen M even smaller, say $M=\lfloor\log N\rfloor$? Not really! Indeed, assume that $\left(\epsilon_{n}\right)_{n \geq 1}$ are independent random variables such that

ON STRONG NORMALITY

$P\left(\epsilon_{n}=a\right)=1 / q$ for each $a \in \mathcal{A}_{q}$. For $N \in \mathbb{N}$, let $H=H_{N}=\left\lfloor\frac{q^{N+1}-q^{N}}{N}\right\rfloor$ and the set

$$
B_{\ell}^{(N)}:=\left\{\omega: \epsilon_{q^{N}+\ell N+\nu}=0, \nu=0,1, \ldots, N-1\right\} \quad(\ell=0,1, \ldots, H-1) .
$$

The events $B_{\ell}^{(N)}(\ell=0,1, \ldots, H-1)$ are independent and $P\left(B_{\ell}^{(N)}\right)=1 / q^{N}$. Hence, with $D_{N}=\bigcup_{\ell=0}^{H-1} B_{\ell}^{(N)}$, we have

$$
P\left(D_{N}\right)=\frac{H}{q^{N}} \geq \frac{1}{2^{N}} .
$$

On the other hand, D_{1}, D_{2}, \ldots are independent and $\sum_{N=1}^{\infty} P\left(D_{N}\right)=\infty$. Hence, by the second Borel-Cantelli lemma (see Lemma2), we may conclude that for almost all events ω, there exists an infinite sequence of N 's, say n_{1}, n_{2}, \ldots such that

$$
\epsilon_{n_{\nu}+1}=0, \quad \epsilon_{n_{\nu}+2}=0, \ldots, \epsilon_{n_{\nu}+m_{\nu}}=0, \quad \text { where } \quad m_{\nu} \geq c \frac{\log n_{\nu}}{\log q} .
$$

We have thus shown that one could encounter a normal number α with sequences of digits covering intervals of the form $[N+1, N+M]$, with $M \approx \log N$, made up only of zeros.

Acknowledgement. The authors would like to thank the referee for many valuable remarks which greatly helped improving the quality of this paper.

REFERENCES

[1] BOREL, E.: Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
[2] BUGEAUD, Y.: Distribution modulo one and Diophantine approximation. Cambridge Tracts in Math. Vol. 193. Cambridge University Press, Cambridge, 2012.
[3] CHAMPERNOWNE, D. G.: The construction of decimals normal in the scale of ten, J. London Math. Soc. 8 (1933), 254-260.
[4] COPELAND, A. H.-ERDŐS, P.: Note on normal numbers, Bull. Amer. Math. Soc. 52 (1946), 857-860.
[5] DAVENPORT, H.-ERDŐS, P.: Note on normal decimals, Canad. J. Math. 4 (1952), 58-63.
[6] DE KONINCK, J. M.-KÁTAI, I.: Construction of normal numbers by classified prime divisors of integers, Funct. Approx. Comment. Math. 45 (2011), no. 2, 231-253.
[7] DE KONINCK, J. M.-KÁTAI, I.: On a problem on normal numbers raised by Igor Shparlinski, Bull. Aust. Math. Soc. 84 (2011), 337-349.

JEAN-MARIE DE KONINCK - IMRE KÁTAI - BUI MINH PHONG

[8] DE KONINCK, J. M.-KÁTAI, I.: Normal numbers created from primes and polynomials, Unif. Distrib. Theory 7 (2012), no. 2, 1-20.
[9] DE KONINCK, J. M.-KÁTAI, I.: Some new methods for constructing normal numbers, Ann. Sci. Math. Québec 36 (2012), no. 2, 349-359.
[10] DE KONINCK, J. M.-KÁTAI, I.: Construction of normal numbers by classified prime divisors of integers II, Funct. Approx. Comment. Math. 49 (2013), no. 1, 7-27.
[11] DE KONINCK, J. M.-KÁTAI, I.: Normal numbers generated using the smallest prime factor function, Ann. Sci. Math. Québec 38 (2014), no. 2, 133-144.
[12] DE KONINCK, J. M.-LUCA, F.: Analytic Number Theory: Exploring the Anatomy of Integers, Grad. Stud. Math. Vol. 134, Amer. Math. Soc., Providence, RI. 2012.
[13] HALÁSZ, G.: On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar. 6 (1971), 211-233.
[14] KÁTAI, I.: A remark on a paper of K. Ramachandra, in: Number Theory (Ootacamund, 1984), Lecture Notes in Math. Vol. 1122, Springer, Berlin, 1985, pp. 147-152.
[15] KUIPERS, L.-NIEDERREITER, H.: Uniform Distribution of Sequences, John Wiley \& Sons, New York, 1974.

Received February 26, 2015
Accepted September 7, 2015

Jean-Marie De Koninck

Dép. math. et stat.
Université Laval
Québec G1V 0A6
CANADA

Imre Kátai

Bui Minh Phong
Computer Algebra Department Eötvös Loránd University Pázmány Péter Sétány I/C HUNGARY
E-mail: jmdk@mat.ulaval.ca katai@inf.elte.hu bui@inf.elte.hu

[^0]: 2010 Mathematics Subject Classification: 11K16, 11N37.
 Keywords: normal numbers, uniform distribution modulo 1.

