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ABSTRACT. Applying the theory of distribution functions of sequences we
find the relative densities of the first digits also for sequences x, not satisfy-
ing Benford’s law. Especially for sequence z, = n", n = 1,2,... and z, = pj,,
n = 1,2,..., where p, is the increasing sequence of all primes and r > 0 is an
arbitrary real. We also add rate of convergence to such densities.

Communicated by Werner Georg Nowak

1. Introduction

In this paper we give a complete solution of the first digit problem in base
b > 2 for the sequence n", n = 1,2,..., and for the sequence p],, n =1,2,...,
where p,, is the nth prime and r > 0 is an arbitrary real. They do not satisfy
Benford’s law. For example for n” we use the following main steps:

e Denote Fy(z) = 1 #{n < N;log,(n") mod 1 € [0,z)}.

e Then FN(logb (%)) - FN(logb (%)) = the density of the number
of n < N for which the leading block of s digits of n” is equal to D,
D =didy---ds.

e Let N; be an increasing sequence of positive integer such that
log, N/ mod 1 — w for some w € [0, 1].
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. D+1 D
D+1 D
= g o8 (Fmr) ) = (o (555 )

v in(b7 b7 )—1
e where g, (z) = # : Zl i + min( P2 )

In Theorem [l we give a rate of such limit. The same limit holds also for the
sequence p., n = 1,2,..., but the rate of convergence described in Theorem
is more complicated.

In the following we present some clarifications.

1.1. Benford’s law

For a real number x, let [x] be the integral part of x, and let x mod 1 = {z} =
x —[z]. Let b > 2 be an integer considered as a base for the development of a real
number x > 0 and M,;(z) be the mantissa of = defined by z = M,(z) x b™(*)
such that 1 < My(x) < b holds, where n(z) is a uniquely determined integer.
Let D = dyds - - - ds be a positive integer expressed in the base b, that is

D=dy xb 1 4dyx b 24 +dy_y xb+d,,

where d; # 0 and at the same time D = dyds - - - ds is considered as an s—consecu-
tive block of digits in the base b. Note that for = of the type

2 =0.00--0dido-dy--,

where d; > 0, we have My(x) = dy.ds - - - ds - - - and the first zero digits is omitted.
Thus arbitrary x > 0 has the first s-digits, starting a non-zero digit, equal to
dids - - - dg if and only if [l

dy.dg---dg SMb<l‘)<d1d2(ds+1) (].)

Since log, My(x) = log, x mod 1 the inequality () is equivalent to

D D+1
log,, <b3——1> <log, x mod 1 < log, (bs——1> : (2)
Underline once again
D D+1
bs—_lzdl.dQ"'ds, bs——1:d1d2(d‘9+1)
Hfdy =dy=---=ds =b—1, then we have dy.dg - - - (ds + 1) = b.
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DISTRIBUTION OF LEADING DIGITS OF NUMBERS

DEeFINITION 1 (P. Diaconis (1977)). A sequence x,,, n = 1,2,. .., of positive real
numbers satisfies Benford’s law (abbreviated to B.L.) [l in base b, if for every
s =1,2,... and every s-digits integer D = d;ds - - - ds we have the density
I #{n < N; leading block of s digits (beginning with # 0) of z,, = D}
im
N—o0 N

D+1 D
= log, (bs——1> — log, <bs——1> ~ (3)

From () and from definition (@) it follows immediately:

THEOREM 1. A sequence x,, n = 1,2,..., of positive real numbers satisfies
B.L. in base b if and only if the sequence logy x,, mod 1 is uniformly distributed
in [0,1) (for definition see page[20).

1.2. Historical comments

The first digit problem: An infinite sequence x,, > 1 of real numbers satisfies
Benford’s law, if the frequency (the asymptotic density) of occurrences of a given
first digit a, when z,, is expressed in the decimal form is given by log; (1 + %) for
every a = 1,2,...,9 (0 as a possible first digit is not admitted). Since z,, has the
first digit @ if and only if log,, z, mod 1 € [log,, a,log;o(a+ 1)) , Benford’s law
for z,, follows from the u.d. of log,x,, mod 1. F. Benford (1938) compared the
empirical frequency of occurrences of a with log,,((a+1)/a) in twenty different
domains such as the areas of 335 rivers; the size of 3259 U.S. populations; the
street address of first 342 persons listed in American Men of Sciences, etc. which
led him to the conclusion that “the logarithmic law applies particularly to those
outlaw numbers that are without known relationships ...” For the asymptotic

density of the second-place digit b he found 22:1 logy (1 + 10++b) .

F. Benford rediscovered Newcomb’s observation from (1881).

Many authors think that if the sequence z,, does not satisfy B.L., then the
relative density of indices n for which the b-expansion of z,, start with leading
digitS D= d1d2 tee ds

1 D D+1
N#{n < N; log, <b5——1> < {log, zn} <log, < pi—1 )}

does not follow any distribution in the sense of natural density, see S. Eliahou,
B. Massé and D. Schneider [5]. These authors as an alternate result shown that
the sequence log;yn” mod 1, n = 1,2,...,[e¢"] and the sequence log;, p), mod 1,
n=1,2,...,[e"], where p, are all prime numbers, have the discrepancy O(r~1).

2precisely generalized or strong
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Thus, for r — oo, these sequences tends to uniform distribution and thus n” and
p;, tends to B.L.
1.3. General scheme of solution of the First digit problem

DEFINITION 2. Let y,, n = 1,2,..., be a sequence of real numbers and define
the step distribution function of y,, mod 1

Fao(z) = #{n < Ny, ]I\I]lod 1€[0,z)} @)

for x € [0,1]. The limit g(z) of a subsequence Fy, (z) of Fy(x)
lim Fy, (z) = g(x) (5)
k—o00

for every z € [0,1], [l is called distribution function (abbreviating d.f.) of y,,,
where N1 < Ny < --- is related sequence of indices. Let G(y, mod 1)
be the set of all possible limits (). If G(y, mod 1) = {g(x)}, g(x) = =,
then the sequence y,, n = 1,2,... is called uniformly distributed mod 1
(abbreviating u.d. mod1.)

From Definition Pl and (2) immediately follows the basic theorem.

THEOREM 2. Let g(x) € G(log, x, mod 1) and lim;_, Fn,(z) = g(x). Then
fOTD = d1d2~'~d5

I #{n < N;; first s digits (starting a non-zero digit) of x,, = D}

im

o (52) o s 20

This is the general scheme of solution of the First digit problem for the se-
quence x,, n = 1,2, ..., for which log, z,, mod 1 need not be u.d. sequence. This
approach is also presented in [2].

Proof. Using Fy(z) = %+#{n < N;z, mod 1 € [0,z)} we have

. <logb (%)) — Fy (10gb (%))

1
= N#{n < N; first s digits (starting a non-zero digit) of x,, = D}.
O

3Similar theory of d.f.s can be found by using weak limits, i.e. the limit (Bl for every continuity
point z of g(z). But in the following we use only continuous g(z).
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2. Distribution functions of sequences involving logarithm

D.f’s of log, x,, mod 1 which we need in (@) can be computed by following
theorems:

THEOREM 3 ([9]). Let the real-valued function f(x) be strictly increasing
forx > 1 and let f=(x) be its inverse function and

Fy(x) = i#{n < N; f(n) mod 1 € [0,2)}.
Assume that N
(i) lim, oo f/(z) =0,
(i) limpoe f~1(k +1) — f71(K) = o0,

(i) limg— oo f_lf(ﬁiw = Y(w) for every sequence w(k) € [0,1] for which
limy 0o w(k) = w, where this limit defines the function ¢ : [0,1] —
[L4(1)],

(iv) (1) > 1.

Then for the sequence f(n) mod 1, n=1,2,..., we have

G(f(n) mod 1)

1 p(@)—1  min((z),¢(w))—1
~{or= g+ e we b} @

Now, if f(N;) mod 1 is a subsequence f(n) mod 1 such that f(N;) mod 1 — w,
then Fn,(x) — gw(z) for every x € [0, 1].

Similar theorem is valid also for f(p,), where p,, are primes.

THEOREM 4 ([7]). Let Fn(z) = #{n < N; f(pn) mod1 € [0,2)} for x €
[0,1], where p, is the increasing sequence of all primes. Assume (i)-(iv) from
Theorem[3. Then the sequence f(p,) mod 1, n=1,2,..., has

G(f(pn) mod 1) = G(f(n) mod 1).

Now, if f(pn,) mod 1 is a subsequence f(p,) mod 1 such that f(py,) mod 1 — w,
then Fn,(x) — gw(z) for every x € [0, 1].

2.1. Natural numbers

Applying Theorem [ to the sequence f(n) =log,n", n =1,2,... we have

1 ktw
iy gz g JTHktw) b e
1br—1 in(br,br) — 1
Gllogs " mod 1) = {gu (o) =y + P I we o)
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If
lim {F(N)} = Tim {log,(N])} = w,

1—00
then we have

lim #{n < N;; first s digits of n” are dids...ds}
i

= gw(logb di.dsy ... (ds + ].)) — gw(logb dy.ds .. ds) (8)

Some examples of w :

1. Assume that N; = b’ and 7 is a positive integer, then
lim {log, (b'"")} = 0 = w
71— 00

and thus for (§) we have
b(log,j dy.da...(ds+1))/r _ 1 b(log,j dy.da...ds)/r _ 1

pt/r —1 B pl/r — 1
_(didy . (do + 1)U — (dydy ... )T
- pl/m —1
1 1
=11 ifr=1.

2. Put N; = [b"+"], where i is a positive integer. The lim; o0 {log, (N])} = w.

Proof. We have N; = [b*] = b, where v’ < w and {log,(N7)} = w'.
Further [b™7" — 07| = [0 — w|b™=" (logh)L. Since [p™+" — b™"| < 1,
then |w’ — w| — 0. Thus lim;_,~{log,(N/)} = w. O
2.2. Primes

Applying Theorem @ for the sequence

f(pn) =logypr,, n=12...,
where p,, is the nth prime and r > 0, we have
, 1 b —1 min(b*,b7)—1
G(log, p;, mod l)z{gw(x):b—ﬂbl N + ( E ) ;wE[O,I]}

If {f(pn,)} = {log,(p,)} — w, then
. #{n < N;; first s digits of p], = dids...ds}
im

i—00 Ni

= gw(logbdl.dz oo (ds + 1)) fgw(logbdl.dz ) dé)
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Some examples of w and N;:
LIf0 < w<1and N; = (b"+"), then lim;, o {log,, ply, } = w.
If N; = 7(b+) + 1, then lim; o {log, ply, } = 0.

If N; = n(b*), then lim;_, . {log, pgvl} =1.

Proof Let 0 <w < 1and N; :W(bitw). We have

w1

N, <O < pN+1,

and so
log, ply, < w +1i < log, Py, 41
Now we have

. . PN;+1
logy, piy, +1 — logy, ply, = rlog,, v

i

= rlog, (1 + PNi+1 — PN: pNi)

PN;

1
:rlogb(lJrﬁ) =0 (i— o00), (9)
N;

where the last equality is obtained by using the result
Pl —Pn = O0%) with 0=0.525 (see [I]).
Therefore there exists 4o such that for i > i, [log, ply,] = and
0 <w—{logyp,} =i+ w— (i +{log, py,}) =i+ w —log, P,
< logy ply, 11 —log, ply, = 0 (1 — ).

Hence, lim;_, - {log p’{vl} = w. Similarly the other two cases are proved. O

2.3. Summary

From the above it follows that the sequences

logy,n" mod1l, n=12..., and log,p, modl, n=12 ..,
o . 1 bF—1, min(b7 b7 )—1.
have the same distribution functions g,,(z) = e + = ;w € [0,1].
I3 T —1 I3
Since lim, oo Zi—_l = 1z, then lim, o guw(z) = x. Thus, as r — oo the
r—1

sequences n” and p], tends to B.L. This is qualitative proof of results in [5].
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3. Rate of convergence

3.1. The first digit problem for the sequence n",n=1,2,...
THEOREM 5. Let N, b be positive integers, b > 1, r > 0, wg € [0,1]. Denote
_ #{n < N;log,(n") mod 1 € [0,2)}

FN(x) N s
1 b —1 min(b7,b+)—1
wolL) = —wg * 3 + = ,
Guo () b br—1 b
w = {rlog, N}.

Then for every x € [0, 1] we have

|w — w 3 rlogy N

[ (2) = gun (2)] < doghbr - (b7 +1) + =+ O

COROLLARY 1. Let v > 0, w = {rlogy, N}. Then for D = didy---ds
the ration %#{1 < n < N; the leading block of s digits of n™ is equal to D}

it can be approximated by
D+1 D
gw | log, -1 — guw | log, ps—1

3 rlog, N\ log N
2<N+ N )—Ob,r< N .

Proof of Corrolary [l We have

with the error term

1 .
—#{1 < n < N; the leading block of s digits of n" is equal to D
N

o (20)) o (120)

Applying Theorem [ with wo = w, we have |Fn(z) — gu(2)| < & + Tk’#. O

EXAMPLE 1. Let r > 0 and 4 be a positive integer. By Corollary [ for D =
dyids - - - dg the fraction

1 ; .

E#{l < n < b'; the leading block of s digits of n" is equal to D}

it can be approximated by

D+1\1 D N1 .
1) — (=7)7 . 2

(b 1) (b r) with the error term " + .

br —1 b
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Now we prove Theorem

Proof. Firstly we repeat a proof of (7). For a positive integer N define
Ky = [f(N)], abbreviating Ky = K,
wy = {f(N)}, abbreviating wy = w,

An([z,y)) = #{n < N; f(n) € [z,v)},
Fn(z) = #{nSN;f(n)Nmod 1€[0.2)}

Clearly f~!(K +w) = N and for every x € [0,1] and Fy(z) in @) we have

ko An (ks b+ )

k=0 N n
L ANEK ) KK 4 w) | OAn([Lf(0))

N
From monotonicity of f(z) it follows An([z,y)) = f~'(y) — f~'(z) + 6,
where |0| < 1. Thus
K—1 -
FN(x): k=0 (f 1<k]_v" x)_f l(k))
L min( ), UK ) — )

N N N ’

FN<1‘) =

where
O(K) < K +1and O(f(0)) < £71(0).

The assumption (ii) implies 1/(f~'(k + 1) — f~(k)) — 0 which together with
Cauchy-Stolz (other name is Stolz-Cesaro, see [I0, p. 4-7]) lemma implies that

K/f ' (K)—0 andthus K/N—0 as N — oo.

Furthermore we can express the first term of Fyy (z) in (I0) as

o (FHk+2) — 7N (R)  fNE) - £71(0)

11
STk ) T E ) )
and the second term as
o ([T E ) N (K tw)
mm( IR ) -1 12)
[ (K+4w)
fmHEK)
Using the assumption (ii) and (iii) the Cauchy-Stolz lemma implies
) e ()) Y () el ) B ot P
Koo SN (f1 (kA1) — fL(k)) koo FHRHD) = f21(R) - w(1)-1
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Now, for increasing subsequence N; of indices N, denote
K; =[f(N;)] and w; = {f(N:)}.
If w;, — wo, then by (lll)
THE) /K 4 wi) = 1(wo), and  fTHEG +2)/fTHIEG) — ().
Thus (), (I2), [@3) imply (@)

Fi, (@) = gy (@)= - D=L min(@l0), vlwo)) 1

forall z€[0,1).

P(wo) B(1)— ¥(wo)
In the following we prove a quantitative form of (7). Put
.« K= [f(N),
o w={f(N)},

e N = f"Y(K+w). Then

Fy () — guy ()
:<Zf=ol(fl(k+w)—f1(k))‘f1(K)—f1(0) v) -1 1 >

SELfF 1 k+1)— f (k) FUK+w) (1) -1 ¢(wo)
+ <”““ (5t 506%) =1 minG(a), (o)) - 1)

RIS (wo)
. <o§§<> N 0<fN1(o>>>
(B ) 1710) w0 — 1Y) (17H0) — 17(0) 14
Yt (T k+1) — (k) v =1\ (K4 w)
M) = 70) 1\ (el -1
“H)< K+ w) w<wO>><w<1>—1> (o)
+ (II0) <m1n (K—I—X 7 (If&—)w))_min(d)(x),w(wo))> (ﬁ) (16)
1(K +)) (‘min(h(). Yiowo) 1
(v - 17
><¢ )( ST - w(wo) ) "

(OK O(f~ (0) > 18)
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Every second term in (I)=(Id)), (II)=5), (III)=(14), (IV)=(7) is bounded

precisely

fHE) — £71(0) W(z) —1 .
( frHE ) ><1’ <w<1>1><1’ <m><1,

f=HEK)
(mlffffffﬁ(wm - 1) <u() -1
i) Y(wo)
Now put f(x) = log,(z"). This function satisfies Theorem B and
fH ) =0b,
i ST 0T
R T R
1 b7 —1 min(br, b)) —1
gw0<l‘):b@.b%—l+ R )

FHO) =0" =1, (1) =b,
K =[rlog, N], w={rlog, N}, N=b""".
Then for the first terms in (I)=(14), (II)=(1%), (II1)=(14), (IV)=(I1) we have:
| S L k@) = 7)) i) 1
Yiso (MR + D) - S R) v(1) 1
Yoo (b =) b -1
Sy (0 —br)  bE -1

~—

)

9 Rl () N S O el S S S 6 S O B
(I YK 4+ w) B Y(we)| | pE b = br  p + N’
(T E ) K +w) .

(IIT) | mi < ) ) )mln(@/}(m),w(wo))

=|min (¥ (), ¥ (w)) — min(y(x), v (wo))|

<|[Y(w) — Y(wo)| = b+ — b%|( for a proof see in appendix), (19)

UK +w) pw g wo o1

(IV) [ (wo) — TR (W) =1)=1]br b+ [(b" 1),
(V)<o§§() . ou;m») . K+1]+Vf—1(o) . rlogb]\]]\f—l—Q.

33



YUKIO OHKUBO—OTO STRAUCH

In the end of proof we use

|w — wo|

¥ —b | < logh - br. O

3.2. First digit problem for p], n =1,2,..., where p,, is the nth prime
THEOREM 6. Let N be an arbitrary integer, v > 0, wg € [0, 1], Denote
_ #{n < N;log,(p,") mod 1 € [0,2)}
N )

1 b1 min(b¥,b) 1
T b1 b

K =[rlogypn], w={rlog,pn}.
Let k1 be an integer such that

(log 59 5rbr + L 4 br logh

ax T, -
logb (b —1)logb

FN(x)

Gwo ((L’)

)

><I{71<K.

Then for every x € [0, 1] we have
b7 (2logh + 11r)

(log b) (b7 — 1)ky — (57 + log b)br — &

K 1 logb+ ﬁ

[FN (%) = Guy ()] <

o logb + 1717“

= pr)2—— 2
ki p™ 5t logb—|—% (b7) Klogb+ %
1 — 1 1
gyl wol gy Tlospy + 1 Ogbf]N“L .

COROLLARY 2. Let r > 0, ¢ be a positive integer, and let N = w(b%). Then for
D = dydsy - - - dy the fraction

%#{1 < n < N; the leading block of s digits of p} is equal to D}
it can be approximated by

with the error term

D+1 D+1 D D
w(55) -0 (55)| [ (57) (55|
o ()

log pn

given by Theorem[@l.
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Proof of Corollary Bl For N = 7(b+) we have rlog, py < i < rlog, pn1.
Since rlog,pnt1 — rlogypy — 0 by (@), we obtain [rlog,pn] = i — 1
for sufficiently large i. Therefore

|w— 1| = |log, ply — (i — 1) — 1| = i —log, ply < r(log, pn41 — log, pN)

< 1< ) < r C
_logb PN PN+1 PN _logb p}v_ga

where C' is a positive constant, § = 0.525 (see [I]). We apply Theorem [ with
N =7(b7), wo = 1, K = [rlog, pn], k1 = [5 log, ], w = {rlog, pn}. O

Proof of Theorem Firstly we repeat the proof of Theorem [ Let 0 <
r < 1. We have

{fpn)} <z<=0< f(pn) —k <z <=

k< flpn) <k+z<= [T (k) <pa < [ (k+a)

Let 7(t) = #{p < t;p — prime}. Using n(t) = #{p < t;p — prime} + O(1),
then we have

Py = Zha U bt ) ),

| min(r(fH K + 2)), 7(f (K +w))) = 7 (fTHE))
N

O(K) | O(x(f1(0)

+ N N '

where
OK) <K+1,  O(x(f70)) <= (s71(0)).
Let K = [f(pn)], w = {f(pn)}. Then py = f~1(K + w). Then we have
N =r(f"YK +w)).
We can express the first term of Fiy(z) in (20) as
o (1~ (k) — w(f 7 (K)) (M (K)) —(f~1(0))
b0 (P k1) —w (1K) AT )
and the second term as

(N Ka) 7 Ew))
mm( A TNR)) A U(K) ) 1
1K Tw))
< (1K)

(21)
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The Cauchy-Stolz lemma implies

The Prime number theorem in the form

t t
)= —— + 0 —
() = fogt (1og2t>

AUk ) S ) logf ) 1O ()
R ) e R T e A |

gives

w7
log f~*(k)
We need
. log f1(k)
1 =1 23
hroo log f~1(k + x) (23)
The limit ([23]) is proved in [7] by using the following steps:

log f~'(k+a) 1 N B
og 1k 1ng_l(k)(logf Yk +2)—log f 1(k))+1

B 1 o f_l(k:—l—x)
= Tog /1(k) g( 108)

since by assumption £ ;ﬂﬁ:;” ) ¥(xz) > 1. Thus

iy PO Rt 2) TR+ )
k—o0 W(f_l(k)) k—o0 f_l(k)

>+1%1

= ¢(x) (24)

and (22) has the form ﬁf;j Applying (24)) on (2I)) we have
s m TN (K m) m(fTN K +w) ) .
i mm( ~(FUK) G U(K) ) U min(y(x), p(w)) - 1
K—oco m(f (K +w)) - q/)(w) '
m(f~H(K))

Here for given N,
pn is Nth prime, K = [f(pn)], w={f(pn)} and wy € [0,1]is arbitrary.

Similarly as for the sequence f(n)mod 1 we have (I8), (I4), (I3), ([@d), (I7)
for the sequence f(p,) mod 1 and by applying 7(x) we have the following
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Fn () = guo ()

- (Zf;é(ﬂ(f_l(k“’”‘”<f”(k))) T ) (A 0))
S (f R+ ) —m(f (k) (K Fw) >

Ol O
$(1)=1 ¥(wo)

i (ZU (K ta)) w(f’l(K+w))> _ )
N <mm( ATUEK) A (K U min(y(x), 9 (wo)) — 1)

m(fH(K4w)) w
(LK) ¥(wo)

— Yot k+x) -7t (1)) ) -1 (7 K) =7 (" (0)) (25)
Yotk + 1) -n(f-1(k)  ¥(1)-1 m(f=H (K+w))

T ) — A (T O) 1\ (-1
§ (H)< A (K +w) ‘w<wO>><w<1>—1> 20
(TN (K+x) 7 K+w) . 1
+(IH)<m1n( T IK) (1K) >_mm(¢(X)7¢(WO))><W>
27)
m(t (K+w)) | (min(v (0, ¥(wo)) = 1
+(Iv><w(wO>— = )( e > (28)
m(f~1(K)) Wi(f_g(;;&'))),w(w())
W) (ogo + o <o>>>>. 29)

Every second term in (I)-(V)=(23), 26), 27) and (28]) is bounded, precisely

<7T(f1(K)) - ﬂ(fl(O))> -1

m(fHE + w))

¢(z)_1><1 <;><1
<¢(1) ~1 Wg(f—(ff;;;l;))

(min(¢(z),¢(w0)) - 1> <ap(1) — 1.

(f~ L (K+w))
Soeta) V(W)
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Thus for the first terms (again writing as (I)-(V)) we have
[N (2) = Guo (7))

St k%) — 7w (K)  Yx) -1
I - -
Sy (r(f ik 1) — w(f1(k)) Y1) -1

R(E1(K) —n(t0) 1
+ (II) LK+ w)) - ¥(wo)
a1 min (070, T L) mino). v(w0)

r(f~ 1K +w))

) <01<VK> . 0<f-N1<o>>)

Now in the following we use Prime number theorem in the form

m(r) = 10;9(5”)’ 0(z) =1, if x — .

Using (see [8, Theorem 1))

! 1+ ! < (t)<i 1+i
logt 2logt i logt 2logt

for t > 59, we have

3
0(t) <1+ ——.
2logt< () < Jr210gt

In our case

and by (35])

w(f‘l(k+x)):b%( k )a(b’“tz)
m(f1()) Btz obr)

(31)

(32)

For an upper bound of (I)=(B0) we use the inequality proved in Appendix
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S (r(f (k +x)) — m(f1(K))
Shso (r(E=1(k + 1)) — m(f=1(k))

Plx) 1
P(1) -1

)
I —
(D )

m(f (k1)) — 7(f1(0))
= Vet Lm0 — <o) 7
where K > ki, Wy, = supy>y, P and
| (k) —w(fNR) p(r) -1
P R D) AR e -1 (%)
Applying (B3) to (B) we have
k= bf((lﬁ%yzigf)_l%b:_l—b?1. (39)
() )
For (II)=(31]) we have
ab®)—x(1) 1| |1 /K+wy 0b¥) 1
(1) A bR b%( K )9(bKi"”) b
1| /K+wy 00b7) 1 1
Sb_%< K )9(bKi’w)_1 o T pm| WO
For(III)=(B2]) we use
min (FUTHE @) a(fHEAw)
am < min (2T H gy )~ min(vta) vl
+ |min(y(x), ¥ (w)) — min(¢(z), P (wo))| (41)
(K t2) T K w)
<max< ) VOl TRy )>

+ [(w) — ¢ (wo)]

= max [ br K 9<b@)—1 br K 6?(b@)—l
K+x) g(b7) ’ K+w] gb%)

b b (42)
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For (IV)=B3) we have

wo whTr)| 1
)b+ — 22 Ly -1
(1v) el (G
s el gl (K VOO e
S(b br |+ <K+w> 905 1><b 1). (43)

cKA1+a()  K+1  [flen)]+1 _ rlogypy +1
- N N N - N '
In all (I)=39), (II)=EQ), (III)={2) and (IV)=@3]) we have common factors

(R (5

Assuming b* > 59, i.e., k > rlog, 59 then (36) implies

k+x
)

T 3r
logh+ 55y _ 0(b - - logb + 3ty
logh+ 3¢ O(b+) logb + 57

and we have

2 2
—r logb o % .2k :((’Sglfa—g?)x L G(bktz)
(k+z)logh+ 3 - = k+x) g(br)

2 _ _ .2
—xloghb+ % - 2 —2kr-z k(,f_kf;) =

(k+x)logb+ &z . 2

which gives

k+4x
k O(b~ )71 - logh + Lr (44)
k+z e(bf) = klogb+ 5§
or
k+x\ 0(b7) . <1ogb+1—;r_ (45)
ko) oms) = klogb+ %
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Applying ([@4) and {@H) to (1)=@39), for k& > rlog, 59 we find

2br 10gb+12_1£v 5rbr + 5 + b7 logh
Qp < — klolglb+ 127+¥ , provided that &k > — &% (46)
br —1—br ;’igbig (br —1)logh

In this case (40) is decreasing with respect to k and in ([B7) it can be using (46)
for k = kq. Then for approximate (I) we need approximate second term in (37)):

—a(f )| K 1 ep) K 1 logb+ g
m(f~UK)) —7(f720))| kip==t o(br)  Kkipmt logh+ g

Also applying [#4)) and {H) to (I)=E1), (II)=EQ), (II)={E2) and (IV)=@3),

we find

[N (%) = Guo ()]

1 logbh+ilr
< (I) 2brk1 logb-i%r K 1 logb"i_%r
= I Io i1, . K-k 1
br —1— ;ﬁ ki =% logbh+ srT
1 logb—l—%r 1
+ (M) — - T o T 1w
br Klogb+ § b= b
. logb+ ir wg w
) by - ———2_ 4 |b+ —br
+ (1) Klogh + 3 +
w 1 10gb+£r 1 wQ w
IV)br(br —1)=——2=+(br —=1)- b+ —b~
HOV)DF0F D 0 )
rlog, py +1

+(v) el

It can be simplified as

w0|

1 logb s 1 —
2 g + 2r+3(b;>2|w .

II II1 IV) < 3(br
() + () + (1Y) < 30677 23 52 log’

and

7 (21 1
the first term of (I) < — b+ (2logb +1 1r) : y
(br —1)(logb)ky — 57b+ — b~ logh — 3
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4. Appendix
4.1. Proof of (37).

Denote W, = supy>y, P and

r(fNk+2) —a(fT1(k) Plx) -1
AR D) —r( k) )1
For k> k; and 0 < z <1 we have

m(f Nkt ) —w(f7H(R)  v(z) -1

0y, < — <0y,

STk —w(fR) (D) —1

O =

Then

w(f 7 k4 @) = (/7 (K) < (w + U= i) (=(F e+ 1) = (771 (1)),

(st @) (571 09) -+

Thus we have

o L Y@ =1 S (U k@) = (N (R) o) 1
\I/kl—l—w(l) 1 < Zf—_kl (r(f~1(k + 1)) —m(f~1 <\Ijkl+w(1) 1 (47)
Abbreviated
K—1
A=Y (v 4 a) — (7 (R))
k=k1
R
k=k1
ky—1
C= 3 ((7 "kt 2) — 2 (7 (B))
k=0
ki1
o= S (st )
k=0
Then
A
21%‘%_1753%;;) where 0§%§1 Oﬁggl
and
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From it
AvC Al ) - 0)
B+D B|~ a(f~1(K))—7(f71(0))’
using
A+C  Y(x)— A+C A A () -1
B+D ¢(1)-1|~|B+D B| |B 9(1)-
and (1) imply (B9).

4.2. Proof of the inequality

A= |min(y(2), ¥ (w)) — min((z), v (wo))| < [1h(w) — ¥ (wo)]
in (T9) and (@I]).

We compute all cases:

r<w<wy; A=i(x)—y(x)=0,

r<wy<w; A=y(r)—(z)=0,

wo < x <w; A= [Y(x) = Y(wo)| <[1h(wo) —b(w)],
wo <w <y A= [p(w) —p(wo)l,

w<wy <x; A= [h(w) —p(wo)l,

w <z <wy; A= [p(w) =) < [h(w) —p(w)].

4.3. Discrepancy Dy of the sequence

{logy 1"}, {log, 2"}, {log,3"},...,{log, N"}.
Put
Fy(e) = #{n < N: {logy n") € [0,2)).
Then discrepancy is defined as

Dy = sup |Fn(z)— .
z€[0,1]

Clearly, we have

Dy < sup [FN(2) = Guo ()] + sup [gu, () — ], (48)
z€[0,1] z€l0,1]
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For the first part of [{A8) we use Theorem Bl Now we put wy = 0 and for the
second part we need found upper bound of

br —1
z—go(x) =2 — — .
go(x) PES
By Lagrange’s theorem
x 111 b
bF 1= (z— 07+ 222 2 €(0,2),
T
1 =3 log b
by —1=(1-0)b7" 22 z,e(0,1).
r
Thus
1 —T3 leogb
z—go(@)=az(1—-b 7 )=z(0— (21 —x2))b~ 3 € (x1,z2).
The upper bound is
110 b
| — go(x)] < br f
and applying Theorem [§] we have
|w — 0] 1,1 3 rlogg N  1logh
Dy < -logb-br - (bT +1 — br
NS — og (b + )+N+ N T m

where w = {rlog, N'}.
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